
Do we Care about Poll Manipulation
in Political Elections?

Vincent Mousseaua, Henri Suruguea,* and Anaëlle Wilczynskia

aMICS, CentraleSupélec, Université Paris-Saclay

Abstract. We consider the problem of poll manipulation in politi-
cal elections. In the context of strategic voting, we are interested in
whether a polling institute can manipulate the information it com-
municates to voters in order to influence the outcome of the election.
We start with a version of the problem where the polling institute
is allowed to send any score to voters. Then, for realistic reasons,
we investigate a restricted version in which the polling institute can-
not announce scores which are too far from the truthful ones. While
we show that both decision problems are computationally hard, we
go beyond this worst-case complexity analysis by using probabilistic
tools to address the possibility of successful and efficient manipula-
tion in practice, w.r.t. several natural preference distributions.

1 Introduction
Strategic voting [23] is a major issue in political elections. Ideally,
one would like to avoid such a strategic behavior. However, by the
Gibbard-Satterthwaite theorem [16, 29], no reasonable voting rule
is immune to voter manipulation. Since we cannot escape strategic
voting, one way to tackle manipulation is to study it via a game-
theoretical analysis. This approach has been followed by several
works in computational social choice [6]. Notably, in iterative vot-
ing [22], the idea is to analyze the convergence and the quality of
a sequential process where voters are allowed to make successive
strategic deviations. In the classical iterative voting framework [24],
complete knowledge is assumed, in the sense that voters are aware
of all others’ current ballot, sometimes even of their full preferences.
However, this assumption is highly unrealistic and does not capture
real scenarios with large electorates, such as political elections.

The question of the information available to the voters is key and
has a strong impact on the manipulability of voting processes [11,
28]. To deal with partial information in voting, one can naturally fol-
low a Bayesian approach by considering a probability distribution
over a set of possible preference orders for other voters [26, 19]. Al-
ternatively, a set of possible preference profiles can be derived from
partial votes [8, 9] or from a given maximum distance to the voters’
actual preferences [1]. Another possibility is to assume local infor-
mation for the voters, which is captured by a social network [18].
Finally, an aggregated global information coming from opinion polls
can be communicated to voters [3, 11, 28, 33].

Following this latter line of research, in this article, inspired by
political elections, we assume that voters receive only a global in-
formation about the voting intentions within the population, which
is communicated through opinion polls. Voters trust the information
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communicated in the polls and compute their best response ballot on
the basis of this information. This confidence in the polls grants an
important power to the polling institute which disseminates it, raising
the natural question of poll manipulation. Indeed, a polling institute
might have its own interests in the election and try to orient votes
toward them. This problem is close to the question of election con-
trol [13], where an external agent aims to alter the outcome of the
election, but here no structural change is made on the election.

In the line of seminal works analyzing the complexity of voter
manipulation [2], one can analyze the complexity of the poll ma-
nipulation problem. However, computational intractability may not
constitute a relevant barrier to manipulation, as it relies on worst-
case analysis [12]. Therefore, to complement complexity results,
an average-case study using a probabilistic approach is relevant, as
it has been widely investigated for voter manipulation (see, e.g.,
[14, 21, 27, 35]). In particular, the asymptotic study is meaningful
since political elections are characterized by a large number of vot-
ers. Considering election control problems, as far as we know, this
approach has been surprisingly neglected. A notable exception is a
recent work by Xia [34] which investigates the likelihood of manip-
ulability for several coalition influence problems, including control
by adding or deleting votes. Up to our best knowledge, no such study
has been conducted so far for the poll manipulation problem.

In this article, we study the constructive poll manipulation prob-
lem where the polling institute wishes to favor a specific candidate by
broadcasting manipulated candidates’ scores. This problem has been
introduced by Wilczynski [33] and further extended by Baumeister
et al. [3], who also consider the destructive variant where the polling
institute aims to prevent the election of a given candidate. While both
works consider a framework where voters are embedded in a social
network and analyze the complexity of the problem with respect to
the structure of the graph, we consider a simpler model with no social
network, which clarifies the role of the opinion polls. In particular,
we analyze the following two versions of the problem. In the unre-
stricted problem, the polling institute is free to send any score in-
formation. The restricted problem considers a more realistic context
where only score information that would be close enough to truth-
ful scores are allowed. The idea for this second problem is for the
polling institute to lie in a reasonable manner, by submitting realis-
tic scores, not too far from a ground truth that may correspond to
the results of a past election, or another poll. Such restrictions help
to gain the trust and confidence from the voters. We prove that both
versions of the problem are computationally hard, answering an open
question from Baumeister et al. [3], but also analyze the probability
of existence of a successful and efficiently computable poll manip-



ulation. For this latter purpose, we introduce a natural condition on
statistical cultures which is satisfied by most natural preference dis-
tributions [31]. In fact, we exhibit a simple heuristic and prove its
success for the unrestricted problem, which means that, without re-
striction, the polling institute can almost always efficiently influence
large elections. For the restricted manipulation problem, we prove
that if the allowed distance is negligible with respect to the number
of voters, then no manipulation is possible. However, when this dis-
tance becomes significant, e.g., when it is a fixed proportion of the
number of voters, easy manipulation is almost always successful in
large elections. Finally, we show that most results still hold when
assuming a more general strategic behavior for voters [33].

2 The Model
We first present the poll manipulation problem in the context of
strategic voting.

2.1 A voting system

For any positive integer k, let [k] denote the set {1, . . . , k}. Let N be
a set of voters where N = [n], and M be a set of candidates where
M = [m]. Since the goal is to study strategic voting in large political
elections, we naturally assume that n > m > 2 (by the Gibbard-
Satterthwaite theorem, voting rules are susceptible to manipulation
only when there are more than two candidates). Each voter i ∈ N
has preferences over candidates represented by a linear order≻i over
candidates. Let top≻i and worst≻i denote the most preferred and
worst candidates, respectively, of voter i ∈ N , i.e., top≻i ⪰i x
and x ⪰i worst≻i for every candidate x ∈ M . The rank of a
given candidate x in a preference order≻i is denoted by r≻i(x), i.e.,
r≻i(x) := |{y ∈ M : y ⪰i x}|. We use the Kendall tau distance to
evaluate the similarity between two preference orders, by counting
the number of pairwise comparisons on which the two orders dis-
agree, i.e., distKT (≻i,≻j) = |{(x, y) ∈ M2 : x ≻i y and y ≻j

x}|. The set of linear orders ≻i for all voters i ∈ N is called a pref-
erence profile and is denoted by≻. Let us denote by Nx≻y the set of
voters who prefer x over y, i.e., Nx≻y := {i ∈ N : x ≻i y}.

The winner of an election is determined by the Plurality voting rule
where ties are broken lexicographically. Let bi ∈ M denote the bal-
lot of voter i and b ∈Mn denote the ballot profile. The ballot profile
b from which bi is excluded is denoted by b−i. The winner under Plu-
rality of the ballot profile b isWP (b) ∈ argmaxx∈M sx(b), where
sx(b) := |{i ∈ N : bi = x}| and a lexicographic tie-breaking, de-
noted by �, is used if necessary. By abuse of notation, we sometimes
directly writeWP (s) to refer to the winner of a score vector s. Let
bT denote the truthful ballot profile, i.e., bTi ⪰i x for every candidate
x ∈M and voter i ∈ N , and sT denote the candidates’ scores in bT .

An election is given by the tuple (N,M,≻,�).

2.2 A strategic voting framework

In this model, we consider an iterative voting process where voters
are strategic with respect to the information they get, which only con-
sists in the score broadcast by the polling institute. Like some previ-
ous works in iterative voting [3, 33], we make the assumption that
voters trust the announced result by the polling institute but, in con-
trast, we assume that voters have no other local information on which
to rely. Let us describe more in details the voters’ strategic behavior.

Initially, all voters vote sincerely since they have no information
yet, therefore the initial ballot profile b0 is exactly the truthful bal-
lot profile bT . Then, the polling institute sends the results of this

initial election by announcing a score vector s of size m such that∑
j∈M sj = n, where sj is supposed to stand for the score of candi-

date j ∈ M in the initial election. Let s−i denote the score vector s
where the truthful ballot of voter i has been removed, i.e., s−i

j = sj ,
for every j ∈ M \ {bTi }, and s−i

bTi
= sbTi

− 1. After the score is
announced, every voter considers possible moves from her initial
truthful ballot with respect to that information. Possible deviations
are captured by the notion of potential winners: A candidate y is a
potential winner for voter i w.r.t. announced score vector s if i be-
lieves that voting for y will make candidate y the new winner, i.e.,
s−i
WP (s−i)

− s−i
y + 1WP (s−i)�y ⩽ 1. Let PW s

i denote the set of
potential winners for voter i w.r.t. announced scores s.

We say that a candidate y is a potential winner if there exists a
voter i such that y ∈ PW s

i . By definition, the announced winner
WP (s) is also a potential winner. A voter is said to be pivotal if her
considered set of potential winners contains more candidates than the
winner exclusively. We consider the following best response for each
voter i w.r.t. announced score s: i deviates from her current ballot bTi
to another ballot supporting candidate y ∈ PW s

i \ {WP (s)} if y
is her most preferred candidate within PW s

i . Each voter can deviate
at most once since she only gets the information about the scores s
provided by the polling institute, and cannot see the deviations from
other voters (thus the order of voters’ deviations does not matter, they
could even be simultaneous). Hence, the deviation process ends after
at most n steps and converges to a final ballot profile denoted by bs.

2.3 A decision problem of manipulation

In this model, a polling institute sends out a score and then each voter
votes strategically w.r.t. that information, and finally the winner of
the election is computed. We want to describe the behavior of the
polling institute who may have its own interest in the election. Let
x∗ be the target candidate of the polling institute, i.e., it wants x∗ to
be elected. Let I be the space of all possible scores that the polling
institute can announce, i.e., I := {s ∈ Nm |

∑m
j=1 sj = n}. We

consider the following poll manipulation problem:

UNRESTRICTED MANIPULATION PROBLEM

Instance: Election (N,M,≻,�), target candidate x∗ ∈M
Question: Does there exist a score s ∈ I to announce such that

WP (b
s) = x∗?

However, the fact that the polling institute is allowed to send any
score is not very realistic. We use a restricted version of the deci-
sion problem where the distance between the truthful poll and the
one sent by the polling institute is bounded. We use the number
of vote changes to evaluate the distance between possible scores,
i.e., d(s, s′) = 1

2

∑
j∈M |sj − s′j |, for every scores s, s′ ∈ I .

Note that this distance is equivalent to the restriction of the ℓ1 dis-
tance on I divided by 2 and sometimes called the “earth mover dis-
tance" in the literature [23]. We let Ik := {s ∈ Nm | d(s, sT ) ≤
k and

∑
j∈M sj = n} be the restricted space of action of the polling

institute. We then analyze the following poll manipulation problem:

RESTRICTED MANIPULATION PROBLEM

Instance: Election (N,M,≻,�), target candidate x∗ ∈ M ,
integer k

Question: Does there exist a score s ∈ Ik to announce such
thatWP (b

s) = x∗?

A poll manipulation is illustrated in the next example.



Example 1. Let us consider an election (N,M,≻,�) where N =
{1, . . . , 8}, M = {a, b, c, d, e}, the tie-breaking � follows the al-
phabetical order and the preferences ≻ are as follows:

1: a ≻ c ≻ d ≻ e ≻ b
2: e ≻ b ≻ d ≻ c ≻ a

3, 4: a ≻ d ≻ b ≻ c ≻ e

5, 6: b ≻ d ≻ e ≻ c ≻ a
7: c ≻ d ≻ a ≻ b ≻ e
8: d ≻ e ≻ a ≻ b ≻ c

The initial truthful scores are given by s0 = (3, 2, 1, 1, 1) (can-
didates are indexed w.r.t. their alphabetical position). Suppose that
the polling institute communicates the following score vector sM =
(0, 2, 2, 3, 1), at distance 3 to the truthful one. The set of poten-
tial winners w.r.t. sM is equal to PW sM

i = {b, c, d} for every
voter i ∈ {1, 2, 3, 4, 8}, while PW sM

5 = PW sM

6 = {c, d} and
PW sM

7 = {b, d}. Voters 3, 4, 5, 6, 7, and 8 do not have an incentive
to deviate since the announced winner d is their most preferred can-
didate among the potential winners. However, voters 1 and 2 have an
incentive to deviate to a ballot supporting c and b, respectively. After
their deviations, we reach the final scores s2 = (2, 3, 2, 1, 0) where
b is the winner. Hence, the polling institute can enforce the election
of b, whereas a would remain the winner without poll manipulation.

3 Preliminaries on Voting Cultures
In this section, we present voting cultures that are commonly used in
the literature [31] to represent the distributions of preferences in elec-
tions. We will show that most of them satisfy a general condition on
cultures, which is very useful for the purpose of our paper. Let Πm

be the set of all preference orders for m candidates, and ≻i∈ Πm

be voter i’s preference order for an arbitrary i ∈ N . We denote as
C(n,Πm

sub) the probability distribution of drawing n preference or-
ders from Πm

sub ⊆ Πm to constitute our preference profile. Such a
probability distribution C(n,Πm

sub) is called a culture and simply de-
noted by C when the context is clear, and its associated probability
is denoted by PC . We use PC(a ≻i b) when it is clear from the
context instead of PC(≻i| a ≻i b). In the following of the paper,
we consider independent and identical drawings of voters’ prefer-
ences such that we can either look at the distribution C(n,Πm

sub) as a
whole object or n drawings of preferences≻i. For technical reasons,
we suppose that there are more than two different candidates which
are ranked first by a preference order with a positive probability to
be drawn under the considered culture. Note that this assumption is
also natural since we focus on strategic voting and manipulation only
occurs with at least three candidates [16, 29].

Definition 1 (Impartial culture). The impartial culture, called IC,
draws every preference order ≻i from Πm with uniform probability.

One can also define variants of impartial cultures which are uni-
form but only on a given subset of Πm, e.g., on single-peaked orders.
A preference profile ≻ is said to be single-peaked [4] if there exists
an axis > on M such that, for every voter i ∈ N , and each triple of
candidates x > y > z, we have y ≻i x or y ≻i z. Let Πm

> be the set
of single-peaked preference orders w.r.t. a given axis > on M .

Definition 2 (Single-peaked culture). For a given axis > over M ,
a culture C(n,Πm

sub) is said to be single-peaked if C(n,Πm
sub) =

C(n,Πm
> ).

We might sample single-peaked preference orders by drawing
them uniformly on the restricted space of single-peaked preference
orders Πm

> . The associated culture then refers to Walsh’s model [32].
Another way to impartially sample single-peaked preference orders
is to use Conitzer’s model [7] which draws preference orders in Πm

>

so that each candidate has the same chance to be ranked first.

Definition 3 (Mallows culture). For given σ ∈ Πm and ϕ ∈ [0, 1],
the Mallows culture, called Mϕ,σ , draws every preference order
with a probability related to its distance to the reference ranking
σ, more precisely, PMϕ,σ (≻i) = 1

Z
ϕdistKT (≻i,σ) where Z =∑

≻i∈Πm ϕdistKT (≻i,σ).

Note that cultureM1,σ corresponds to the impartial culture.
We introduce below a simple property on cultures which will be

key in the poll manipulation analysis.

Definition 4 (Balanced culture). A distribution C(n,Πm) is said to
be balanced for a given candidate c ∈ M if there exists another
sufficiently worst candidate ℓ ∈M \ {c}, in the sense that PC(c ≻i

ℓ) ≥ 1
2

. The set of such candidates ℓ for x is denoted by BC(x). In
general, a distribution C is said to be balanced if it is balanced for
every candidate c ∈M .

It turns out that all cultures that we consider are balanced.

Proposition 1. The impartial culture is balanced.

Proof. Let i ∈ N be a voter. The impartial culture is balanced for
every candidate because for any pair of candidates x and y, we have
PIC(x ≻i y) = PIC(y ≻i x) =

1
2

since each preference order in
Πm has the same probability to be drawn.

For a given axis > on M , let e>1 and e>2 denote the two extreme
candidates of >.

Proposition 2. If x ∈M \ {e>1 , e>2 }, then every single-peaked cul-
ture C(n,Πm

> ) is balanced for x. If x ∈ {e>1 , e>2 }, then every single-
peaked culture C(n,Πm

> ) which also satisfies PC({≻i |worst≻i =
x}) ⩽ 1

2
, is balanced for x.

Sketch of proof. We mostly use the following fact: PC({≻i

| worst≻i = e>1 } ∪ {≻i | worst≻i = e>2 }) = 1.

In particular, the previous proposition shows that both
Walsh’s [32] and Conitzer’s [7] cultures are balanced.

Proposition 3. Any Mallows culture Mϕ,σ is balanced for every
candidate x ∈M \ {worstσ}.

Sketch of proof. Consider any candidate x ∈M \{worstσ} and the
candidate ℓ := worstσ . Let Πm

y≻z denote the set of all preference
orders where y is ranked before z, i.e., Πm

y≻z := {≻i∈ Πm : y ≻i

z}. Consider the bijection τ : Πm
ℓ≻x → Πm

x≻ℓ, where for every ≻i∈
Πm

ℓ≻x, we construct the preference order τ(≻i) ∈ Πm
x≻ℓ which is the

same as ≻i except that the positions of x and ℓ are swapped. One
can show that distKT (σ,≻i) ≥ distKT (σ, τ(≻i)), for every ≻i∈
Πm

ℓ≻x, by analyzing the differences between ≻i and τ(≻i) in terms
of agreement on pairwise comparisons with σ. By definition of the
Mallows cultureMϕ,σ , we thus havePMϕ,σ (τ(≻i)) ≥ PMϕ,σ (≻i

). Hence, we conclude that PMϕ,σ ({≻′
i: x ≻′

i ℓ}) ≥ PMϕ,σ ({≻′
i:

ℓ ≻′
i x}), and thus PMϕ,σ ({≻′

i: x ≻′
i ℓ}) ≥ 1

2
, implying that

Mϕ,σ is balanced for x.

4 The Unrestricted Poll Manipulation Problem
This section is devoted to the study of the unrestricted manipulation
problem where the polling institute can send any score in I . We first
give some results on the computational complexity of the problem
then we continue our work with a probabilistic approach of the prob-
lem to capture what can happen in practice.



We first prove that, even in the unrestricted case, the poll manipu-
lation problem is NP-complete. Our result answers an open question
from Baumeister et al. [3].

Theorem 4. The unrestricted manipulation problem is NP-complete.

Sketch of proof. Membership to NP is straightforward: given com-
municated scores, we can efficiently derive the possible unique devi-
ation of each voter and compute the winner in the deviating profile.

For hardness, we perform a reduction from a variant of EXACT

COVER BY 3-SETS (X3C) known to be NP-complete [17]: Given a
set X = {x1, x2, . . . , x3q} and a set S = {S1, S2, . . . , S3q} of 3-
element subsets of X , where each element xi occurs in exactly three
subsets of S, we ask whether there exists an exact cover, i.e., a subset
S′ ⊆ S such that every element of X occurs in exactly one member
of S′. From an instance (X,S) of X3C, we construct an instance of
our unrestricted manipulation problem as follows.

For each element xi, for i ∈ [3q], we create a candidate yi, and
for each subset Sj where j ∈ [3q], we create a candidate cj . We add
three candidates w, z, and t where t is our target candidate.

There are 12q + 7 voters: for each element xi, for i ∈ [3q], we
create one voter Yi, for each subset Sj , for j ∈ [3q], we create three
voters Cr

j where r ∈ [3], and we finally add two voters T ℓ, two
voters Zℓ, two voters W ℓ for ℓ ∈ [2], and one voter D.

Their preferences are defined below, where y(srj ) denotes the can-
didate yi associated with the rth element of subset Sj , and when a
subset of candidates is mentioned, the candidates are ranked accord-
ing to the increasing order of their indices.

Yi: w ≻ yi ≻ z ≻ {yi′}i′ ̸=i ≻ {cj}j ≻ t for i ∈ [3q]
Cr

j : y(srj ) ≻ cj ≻ z ≻ w ≻ {yi′}i′ ̸=i ≻ {cj}j ≻ t for j ∈ [3q], r ∈ [3]

T ℓ: t ≻ z ≻ w ≻ {yi}i ≻ {cj}j for ℓ ∈ [2]

Zℓ: z ≻ w ≻ {yi}i ≻ {cj}j ≻ t for ℓ ∈ [2]

W ℓ: w ≻ z ≻ {yi}i ≻ {cj}j ≻ t for ℓ ∈ [2]
D: w ≻ t ≻ z ≻ {yi}i ≻ {cj}j

Finally, the tie-breaking rule is as follows: w� t� z� y1 � · · ·�
y3q � c1 � · · ·� c3q .

The winner of the election with the truthful ballot profile is can-
didate w. The details of the scores for this truthful ballot profile are
given in the second column of Table 1.

Table 1. Candidates’ scores in the complexity proof of Theorem 4

candidate initial score announced score score after manipulation

yi (i ∈ [3q]) 3 3 3

cj (j ∈ [3q]) 0
3 if Sj ∈ S′ 3 if Sj ∈ S′

0 otherwise 0 otherwise
w 3q + 3 2 2
t 2 2 3
z 2 3 2

winner w z t

We claim that there exists an exact cover in (X,S) iff we can force
the election of candidate t in the constructed instance.

Suppose first that there exists a subset S′ ⊆ S such that every
element of X occurs in exactly one element of S′. Let us consider
manipulated communicated scores which differ from the sincere ones
by taking 3q + 1 votes initially given to w to give one additional
vote to z and three votes to cj for each Sj ∈ S′. These scores are
summarized in the third column of Table 1. One can prove that these
communicated scores trigger deviations which lead to the final scores
presented in the fourth column of Table 1, where t is the winner.

Suppose now that there exist communicated scores such that the
target candidate t becomes the winner after deviations from the vot-
ers. One can show that the only possibility for communicated scores

to lead to the victory of t is to announce candidate z the winner and,
as potential winners, the target candidate t and exactly q candidates
cj which correspond to subsets Sj forming an exact cover of X .

Note that even though we have proved that the problem is NP-
complete, we know from Baumeister et al. [3] that it is FPT when
parameterized by the number of candidates m. Another way to go
beyond the NP-hardness result, which focuses on worst-case com-
plexity, is to analyze the actual possibility of poll manipulation using
a probabilistic approach which works even when m is large. We will
see that the poll manipulation problem is often easy to tackle in a
probabilistic point of view, following natural statistical cultures as
defined in Section 3. We will start by considering a balanced culture.

For a given target candidate x∗ the polling institute wants to elect,
we say its poll manipulation is successful if after all strategic moves
from voters, the desired candidate x∗ is elected. Let us denote by
S the associated event of success, which corresponds to the yes-
instances of the unrestricted poll manipulation problem.

Let 2PW-H(x∗, ℓ) be the heuristic which announces a score with
exactly two potential winners x∗ and ℓ, with x∗ the target candidate
and ℓ the announced winner. For realistic conditions, one point is
given to candidates with a positive score in the truthful ballot profile.
Assuming n > m+5 is sufficient to guarantee the possibility of mak-
ing any pair of candidates the only potential winners (this hypothe-
sis is rather weak since we focus on large elections in terms of vot-
ers). It then suffices to check whether the associated communicated
polling score leads to the victory of x∗. This heuristic can be called
by a global heuristic, which tests it with different candidates ℓ. Our
heuristics are computable in polynomial time and are inspired from
the heuristics of Wilczynski [33] and Baumeister et al. [3], where
the idea is to find a candidate ℓ, which is a threatening winner, i.e.,
enough voters prefer x∗ to ℓ, while x∗ is the only credible alternative
to ℓ, in order to incentivize voters to deviate to x∗.

Let S2PW-H(x∗ , ℓ) denote the event of success for heuristic 2PW-
H(x∗, ℓ). Let X−ℓ be the random variable which counts the number
of voters who prefer x∗ over ℓ, i.e., X−ℓ = |Nx∗≻ℓ|.

Similarly, let Yℓ,j be the random variable which counts the num-
ber of voters who prefer ℓ over x∗ while their most preferred candi-
date is j, i.e., Yℓ,j = |{i ∈ N ℓ≻x∗

: top≻i = j}|. If our heuris-
tic 2PW-H(x∗, ℓ) indeed succeeds to announce exactly two potential
winners x∗ and ℓ with ℓ as a winner, then only voters who prefer x∗

over ℓ and currently vote for another candidate, will deviate and they
will do so in favor of x∗. Note that voters already having x∗ as their
top choice would keep this vote because there is no other potential
winner. Therefore, in total, after deviations, x∗ obtains a number of
votes which is equal to the numbers of voters who prefer x∗ over ℓ.
It follows that x∗ would win only if the number of voters preferring
x∗ over ℓ is greater than the number of voters who keep their vote
for another candidate, implying that for a given culture C(n,Πm),
PC(S2PW-H(x∗ , ℓ)) = PC(∀j ∈M \ {x∗}, Yℓ,j ⩽ X−ℓ).

Our first theorem provides a high lower bound on the probability
of success of the poll manipulation heuristic.

Theorem 5. For a balanced culture C(n,Πm), there exists ℓ ∈
BC(x

∗) such that the probability of success of the sub-heuristic
2PW-H(x∗, ℓ), is as follows: PC(S2PW-H(x∗ , ℓ)) ⩾ 1 − 2(m −
2)(e−2n(px∗,ℓ−qx∗,ℓ,j∗ )2) where:
• px∗,ℓ := PC(x

∗ ≻i ℓ),
• rx∗,ℓ,j := PC({ℓ ≻i x

∗} ∩ {j = top≻i}), for j ̸= ℓ,
• qx∗,ℓ,j :=

px∗,ℓ+rx∗,ℓ,j

2
,

• j∗ := argminj∈M\{x∗,ℓ}PC(Yℓ,j ⩽ X−ℓ).



In particular, the probability of success of the global heuristic satis-
fies the same lower bound.

Sketch of proof. For our target candidate x∗ and a balanced culture
C(n,Πm), let us consider a candidate ℓ ∈ BC(x

∗). Since ℓ ∈
BC(x

∗), we always have Yℓ,ℓ ⩽ X−ℓ and thus PC(S2PW-H(x∗ , ℓ)) =
PC(∀j ∈M \{x∗, ℓ}, Yℓ,j ⩽ X−ℓ). We will show a lower bound to
this latter quantity. Using Bonferroni’s inequality, we have:PC(∀j ∈
M \ {x∗, ℓ}, Yℓ,j ⩽ X−ℓ) ⩾

∑
j∈M\{x∗,ℓ}PC(Yℓ,j ⩽ X−ℓ) −

(m− 3) ⩾ (m− 2) ·minj∈M\{x∗,ℓ}PC(Yℓ,j ⩽ X−ℓ)− (m− 3).
By considering j∗ := argminj∈M\{x∗,ℓ}PC(Yℓ,j ⩽ X−ℓ), we
then have that PC(∀j ∈ M \ {x∗, ℓ}, Yℓ,j ⩽ X−ℓ) ⩾ (m − 2) ·
(PC(Yℓ,j∗ ⩽ X−ℓ)− 1)+1. Let us now treat the termPC(Yℓ,j∗ ⩽
X−ℓ). We remark that X−ℓ follows a binomial distribution of param-
eters n and px∗,ℓ, and Yℓ,j∗ follows a binomial distribution of param-
eters n and rx∗,ℓ,j∗ , where px∗,ℓ and rx∗,ℓ,j are defined as px∗,ℓ =
PC(x

∗ ≻i ℓ) and rx∗,ℓ,j = PC({ℓ ≻i x
∗}∩{j = top≻i}), for ev-

ery j ̸= ℓ. We introduce qx∗,ℓ,j∗ :=
px∗,ℓ+rx∗,ℓ,j∗

2
to lower bound

our probability as follows: PC(Yℓ,j∗ ⩽ X−ℓ) ⩾ PC({Yℓ,j∗ <
qx∗,ℓ,j∗ · n}

⋂
{X−ℓ > qx∗,ℓ,j∗ · n}). We use again Bonferroni’s

inequality and an inclusion of events to get: PC(Yℓ,j∗ ⩽ X−ℓ) ⩾
PC({Yℓ,j∗ < qx∗,ℓ,j∗ · n}) + PC({X−ℓ > qx∗,ℓ,j∗ · n}) − 1.
We then use Hoeffding’s inequality to find these lower bounds:
PC(Yℓ,j∗ < qx∗,ℓ,j∗ · n) ⩾ 1 − e−2n(qx∗,ℓ,j∗−rx∗,ℓ,j∗ )2 and
PC(X−ℓ > qx∗,ℓ,j∗ · n) ⩾ 1 − e−2n(px∗,ℓ−qx∗,ℓ,j∗ )2 . Putting
the last two inequalities together we get: PC(Yℓ,j∗ ⩽ X−ℓ) ⩾

1− e−2n(px∗,ℓ−qx∗,ℓ,j∗ )2 − e−2n(qx∗,ℓ,j∗−rx∗,ℓ,j∗ )2 . Coming back
to the first work of the proof we have: PC(S2PW-H(x∗ , ℓ)) ⩾ 1 −
(m−2)(e−2n(px∗,ℓ−qx∗,ℓ,j∗ )2 + e−2n(qx∗,ℓ,j∗−rx∗,ℓ,j∗ )2). Finally,
since qx∗,ℓ,j∗ is defined as the middle between px∗,ℓ and rx∗,ℓ,j∗ ,
we can simplify the inequality: PC(S2PW-H(x∗ , ℓ)) ⩾ 1 − 2(m −
2)e−2n(px∗,ℓ−qx∗,ℓ,j∗ )2 .

We can thus deduce the same lower bound for the probability of
existence of a successful unrestricted poll manipulation.

Corollary 6. For a balanced culture C(n,Πm), the probability of
success of an unrestricted poll manipulation is as follows:PC(S) ⩾

1− 2(m− 2)(e−2n(px∗,ℓ−qx∗,ℓ,j∗ )2).

Our next theorem considers the asymptotic case and shows the
convergence of the lower bound probability toward 1 when n be-
comes large. Since the number of voters is typically large in political
elections, this shows an important susceptibility to poll manipulation.

Theorem 7. For a balanced culture C(n,Πm), there exists ℓ ∈
BC(x

∗) such that the probability of success of the sub-heuristic
2PW-H(x∗, ℓ), and thus of the Global Heuristic, tends toward 1, i.e.,
limn→∞PC(S2PW-H(x∗ , ℓ)) = 1 and thus limn→∞PC(S) = 1.

Proof. We use the lower bound from Theorem 5 to deduce the con-
vergence toward 1 of this probability. In fact it is enough to pass to
the limit on both sides in n the number of voters. The only tricky
point might be when px∗,ℓ = qx∗,ℓ,j∗ . However, this situation can
happen only when the culture puts positive probability only on pref-
erence orders whose top can only be x∗ or j and in an equal manner,
which is not possible by natural assumption on the culture.

Observe that the quantities px∗,ℓ and qx∗,ℓ,j from Theorem 5 are
constants and different, we thus have exponentially fast convergence
toward 1 for the probability of success of 2PW-H(x∗, ℓ) w.r.t. the
number of voters. To give a quick intuition, observe that for m = 5

and n = 50, we get a lower bound of 0.82 and for m = 5 and
n = 100, we already have a lower bound of 0.99 which is very fast!

Beyond this general result on balanced cultures, the goal would
be to capture realistic cultures regarding real elections [31]. From
Propositions 1–3, we can derive the following corollary which shows
that our general result covers very natural concrete cultures.

Corollary 8. For a culture C(n,Πm), there exists ℓ ∈ BC(x
∗)

such that the probability of success of 2PW-H(x∗, ℓ), and thus of the
Global Heuristic, tends toward 1, i.e., limn→∞PC(S2PW-H(x∗ , ℓ)) =
1 and thus limn→∞PC(S) = 1, when:

• C corresponds to the impartial culture, or
• C is a single-peaked culture and x∗ is not an extreme candidate or

x∗ is extreme but PC(≻i| worst≻i = x∗) ⩽ 1
2

, which includes
Walsh’s and Conitzer’s cultures, or

• C corresponds to a Mallows cultureMϕ,σ where x∗ ̸= worstσ .

Our results show that even if the poll manipulation problem is
hard, it is very likely for the polling institute to efficiently and suc-
cessfully control the election, under natural preference distributions.
However, the hypothesis that allows to send any score is questionable
since the polling institute might be forced to meet some legal quality
standards or to maintain voter trust by sending a reasonable score.

5 The Restricted Poll Manipulation Problem
This section is devoted to the study of the manipulation problem in
its restricted version i.e., the polling institute is restricted in its ability
to lie about the scores and can only send a score vector from Ik.

The restricted poll manipulation problem is known to be NP-
hard [3]. However, one could hope to get a fixed-parameter tractable
algorithm w.r.t. the maximum allowed distance k to the truthful
scores. We show below that such an efficient algorithm is unlikely
to exist since we prove that the problem is W[1]-hard.

Theorem 9. The restricted manipulation problem is W[1]-hard.

Sketch of proof. From an instance (G = (V,E), k) of k-Clique,
known to be W[1]-complete [10], where n := |V | and, w.l.o.g.,
2 < k < n − 1, we construct an instance of the restricted ma-
nipulation problem as follows.

For each vertex vi ∈ V , we create a candidate vi, and for each
edge {vi, vj} ∈ E, we create a candidate eij (we suppose i < j for
this notation). We add three other candidates w, t, and z.

Let K := (n−k)k. For each vertex vi ∈ V , we create k voters U ℓ
i

for ℓ ∈ [k], and K−1−δ(vi) voters Dℓ
i for ℓ ∈ [K−1−δ(vi)] (by

our assumption on k, this quantity cannot be negative), where δ(vi)
denotes the degree of vertex vi in G.

For each edge {vi, vj} ∈ E, we create two voters F i
ij and F j

ij ,
and K − 2 voters Eℓ

ij for ℓ ∈ [K − 2]. Finally, we add K voters T ℓ

for ℓ ∈ [K] and K − 1 voters Zℓ for ℓ ∈ [K − 1].
The preferences of the voters over the candidates are described

below, for each i ∈ [n], and each {vp, vq} ∈ E:
U ℓ

i : w ≻ vi ≻ z ≻ {vj}j ̸=i ≻ {er,s}{r,s} ≻ t for ℓ ∈ [k]
F p
pq: vp ≻ epq ≻ z ≻ w ≻ {vj}j ̸=p ≻ {er,s}{r,s}≠{p,q} ≻ t

F q
pq: vq ≻ epq ≻ z ≻ w ≻ {vj}j ̸=q ≻ {er,s}{r,s}≠{p,q} ≻ t

Dℓ
i : vi ≻ z ≻ w ≻ {vj}j ̸=i ≻ {er,s}{r,s} ≻ t for ℓ ∈ [K − 1− δ(vi)]

T ℓ: t ≻ z ≻ w ≻ {vj}j ≻ {er,s}{r,s} for ℓ ∈ [K]

Eℓ
pq: epq ≻ z ≻ w ≻ {vj}j ≻ {er,s}{r,s}≠{p,q} ≻ t for ℓ ∈ [K − 2]

Zℓ: z ≻ w ≻ {vj}j ≻ {er,s}{r,s} ≻ t for ℓ ∈ [K − 1]

Finally, the tie-breaking rule is as follows: z � t� · · ·� w.
The winner of the election with the truthful ballot profile is can-

didate w. The details of the scores for this truthful ballot profile are
given in the second column of Table 2.



Table 2. Candidates’ scores in the complexity proof of Theorem 9

candidate initial score announced score score after manipulation

vi (i ∈ [n]) K − 1
K if vi ∈ S K if vi ∈ S

K − 1 otherwise K − 1 otherwise

eij ({vi, vj} ∈ E) K − 2
K if vp, vq ∈ S K if vp, vq ∈ S
K − 2 otherwise K − 2 otherwise

w kn K K
t K K − 1 K
z K − 1 K K − 1

winner w z t

We claim that G admits a clique of size k iff we can force the
election of candidate t by announcing scores which differ from the
truthful ones by at most k2 + 1 vote changes.

Suppose first that there exists a subset of vertices S ⊆ V such
that S is a k-Clique of G, i.e., |S| = k and {vi, vj} ∈ E for every
vi, vj ∈ S. Consider manipulated communicated scores which differ
from the sincere ones by taking k2 votes initially given to w in order
to give one additional vote to each vi ∈ S (there are k such candi-
dates) and two additional votes to each eij such that vi, vj ∈ S (there
are k(k−1)

2
such candidates), and finally by taking one vote initially

given to t in order to give it to z. In total, these scores differ from the
sincere ones by exactly k2 +1 vote changes, they are summarized in
the third column of Table 2. One can prove that these communicated
scores trigger deviations which lead to the final scores presented in
the fourth column of Table 2, where t is the winner.

Suppose now that there exist communicated scores such that can-
didate t becomes the winner after all voters’ deviations. One can
show that the only possibility for communicated scores to lead to the
victory of the target candidate t is to announce candidate z the winner
and, as potential winners, k candidates vi, as well as k(k−1)/2 can-
didates epq , such that for each potential winner vi, there are k−1 po-
tential winners eij (or eji) corresponding to edges incident to vi.

Nevertheless, we prove below that the restricted poll manipulation
problem can be efficiently solved if the parameter k of the maximum
distance to the truthful scores is a constant.

Proposition 10. The restricted manipulation problem is in XP w.r.t.
the maximum distance k to the truthful scores. More precisely, it can
be solved by an algorithm which runs in time Θ(m2k+1 · n).

Sketch of proof. We provide an upper bound of m2k to |Ik|. It is then
enough to visit every score vector of Ik to check whether it leads to
the victory of the target candidate.

However, the previous result cannot be used if k is large and does
not tell whether there actually exists a successful manipulation. We
thus use a probabilistic approach to analyze the possibility of poll
manipulation. Let Sk denote the event of success for the restricted
poll manipulation where k denotes the maximum allowed distance
to the truthful scores. We first prove that when k is small compared
to
√
n, the restricted poll manipulation tends to be impossible.

Theorem 11. For any culture C(n,Πm), if the maximum distance
k to the truthful scores is such that k = o(

√
n) and the target can-

didate x∗ is not winning in the initial score, then the probability of
existence of a successful poll manipulation to elect x∗ tends toward
zero, i.e., limn→∞PC(Sk) = 0.

Sketch of proof. We first identify the law of the truthful scores.

Observation 12. For a culture C(n,Πm), the truthful scores sT

follow a multinomial law Multi(q, n) where q = (q1, . . . , qm) and
qj := PC({WP (s

T ) = j}), for every j ∈M .

The truthful scores follow a multinomial law because there are n
voters’ preferences drawn independently at random with the same
law, and we have m possibilities for the most preferred candidate
of each voter, and these are the only necessary elements to compute
scores sT . Let c∗ be the truthful winner, i.e., c∗ := WP (b

T ). In-
formally, a necessary condition for the existence of a successful ma-
nipulation with the two-candidate heuristic is that there is at least
one candidate that is sufficiently close to the winner. The pair of
candidates would then be this candidate and the current winner. Of
course, this is not necessarily sufficient, as the pair may not be the
right one. However, we will see that this necessary condition occurs
with probability 0, and that is enough for us to conclude. We then
write Sk ⊂ {

⋃
z ̸=c∗{|s

T
c∗ − sTz + 1c∗�z| ≤ k}}.

We will analyze the probability of the second event to get an up-
per bound on the probability of success of the restricted poll ma-
nipulation problem. By using Observation 12 and a central limit
theorem for multinomial law sT , we get: 1√

n
(sT − nq) −→

n→+∞
N (0;K), where Ki,j = qiδi,j − qiqj , for every 1 ≤ i, j ≤
m, with δi,j = 1 if i = j and δi,j = 0 otherwise. We de-
note N (0;K) = (N1, . . . ,Nm) and remark that each Nj follows
a Gaussian law. Using the previous point we show that for any
z ∈ M \ {x∗}, we have: limn→+∞PC(|sTc∗ − sTz + 1c∗�z| ≤
k) = 0. It follows for the probability of the success event that
limn→+∞PC(Sk) ⩽ limn→+∞PC(

⋃
z ̸=c∗ |s

T
c∗ − sTz +1c∗�z| ≤

k) ≤ limn→+∞
∑

z ̸=c∗ PC(|sTc∗−sTz +1c∗�z| ≤ k) = 0. We then
get: lim

n→+∞
PC(Sk) = 0, which concludes the proof.

Then, we get immediately the following corollary if we include
the case where x∗ might win in the initial poll, because it is always
possible to communicate scores that keep the same winner.

Corollary 13. For any culture C(n,Πm), if the maximum dis-
tance k to the truthful scores is such that k = o(

√
n), then

limn→∞PC(Sk) = PC({WP (s
T ) = x∗}).

We might note that, e.g., PC({WP (s
T ) = x∗}) ≈ 1

m
when con-

sidering the impartial culture.
We now focus on a case where poll manipulation can be success-

ful, and prove that we can even efficiently compute it, thanks to an
adaptation of the global heuristic where the sub-heuristic to call is
Restricted 2PW-H(x∗, ℓ) which, starting from sT , tries to announce ℓ
as the winner and x∗ as the only other potential winner, while taking
into account the maximum allowed distance k. Let SRestr-2PW-H(x∗ , ℓ)

denote the event of success of this sub-heuristic.

Theorem 14. For a balanced culture C, if the maximum dis-
tance k to the truthful scores is such that n = o(k) where and
c∗ := WP (b

T ), then there exists ℓ ∈ BC(x
∗) such that the prob-

ability of success of Restricted 2PW-H(x∗, ℓ) tends toward 1, i.e.,
limn→∞PC(SRestr-2PW-H(x∗ , ℓ)) = 1 and thus limn→∞PC(Sk) =
1.

Proof. We can first observe that each score the polling institute may
send can be summarized by its set of potential winners and its win-
ner, since two announced scores with the same potential winners
and winner produce the same voters’ deviations. A type T (s) for
a score vector s is thus defined as a pair (PW,w) ∈ 2M × M
where w ∈ PW , representing its potential winners and its win-
ner. The set of all possible score types is denoted by T . We will
then show that: PC({

⋃
s∈Ik
T (s) = T }) = 1. Let c∗ be the truth-

ful winner, i.e., c∗ := WP (b
T ). Informally, a sufficient condition

for the existence of a strategy of each type is that all candidates



are sufficiently close to the winner. More precisely, we would like
them all to be closer than k

m
, so that the cost of making poten-

tial winners any pair of candidates never exceeds k. We then get:
{
⋂

z ̸=c∗{|s
T
c∗ − sTz + 1c∗�z| < k

m
}} ⊂ {

⋃
s∈Ik
T (s) = T }.

We again use the same technique adding and subtracting n · qc∗ and
n · qz and a central limit theorem on the truthful scores sT following
a multinomial law (Observation 12). However, we have this time a
remaining term

√
n(qc∗ − qz) that is bounded by assumption (n =

o(k)). We then get: lim
n→+∞

PC(|sTc∗−sTz +1c∗�z| < k
m
) = 1. Since

a countable intersection of events of probability 1 is of probability 1,
we have: lim

n→+∞
PC(

⋂
z ̸=c∗{|s

T
c∗−sTz +1c∗�z| < k

m
}) = 1. Then,

we have: PC(
⋃

s∈Ik
T (s) = T ) = 1. Using the fact that a success-

ful strategy exists in the unrestricted case and since all strategies are
accessible, we get: limn→∞PC(SRestr-2PW-H(x∗ , ℓ)) = 1. Therefore,
we have also: limn→∞PC(Sk) = 1.

The case k = α ·n with α ∈]0, 1] is included in Theorem 14. This
has a clear interpretation: if the polling institute is allowed to lie by a
fraction α on scores then we will fall in the manipulation regime for
a sufficiently large number of voters.

Like for the unrestricted problem, the general result of Theorem 14
holds for the concrete cultures mentioned in Section 3.

Corollary 15. For a culture C and n = o(k) and c∗ :=
WP (b

T ), there exists ℓ ∈ BC(x
∗) such that the probabil-

ity of success of Restricted 2PW-H(x∗, ℓ) tends toward 1, i.e.,
limn→∞PC(SRestr-2PW-H(x∗ , ℓ)) = 1 and thus limn→∞PC(Sk) =
1, when:

• C corresponds to the impartial culture, or
• C is a single-peaked culture and x∗ is not an extreme candidate or

x∗ is extreme but PC(≻i| worst≻i = x∗) ⩽ 1
2

, which includes
Walsh’s and Conitzer’s cultures, or

• C corresponds to a Mallows cultureMϕ,σ where x∗ ̸= worstσ .

6 Toward a Generalization of Strategic Behavior
Until now, we only considered strategic moves from pivotal voters.
However, one can argue that voters might want to deviate when they
are close enough to be pivotal. Such a strategic behavior can be cap-
tured by considering pivotal thresholds pi ∈ N for each voter i, as
done by Wilczynski [33] in an idea close to local-dominance [25].
This slightly modifies the definition of potential winners: A candidate
y is a general potential winner for voter i w.r.t. score s if i believes
that adding pi votes to y will make candidate y the new winner, i.e.,
s−i
WP (s−i)

− s−i
y + 1WP (s−i)�y ⩽ pi. We denote PW s,pi

i the set
of general potential winners for i w.r.t. score s. The definition of best
response naturally follows by considering general potential winners.
Our initial setting corresponds to the case where pi = 1.

Let us first analyze the impact of pivotal thresholds on strate-
gic voting. For this purpose, we suppose that the polling institute
is sincere and sends truthful scores s = sT , and that all thresh-
olds are equal and denoted by p, i.e., pi = p, for every voter i.
Let us define the expected proportion of strategic voters PSV w.r.t.
culture C(n,Πm), n, m, and p. Let Up

i denote the event where
the top candidate of voter i is not a general potential winner for i,
i.e., Up

i = {top≻i /∈ PW s,p
i }, and Dp

i the event where voter i
could favor a potential winner other than the current winner, that
she prefers to it, i.e., Dp

i = {∃w ∈ M \ {top≻i} : w ≻i

WP (s) and w ∈ PW s,p
i }. By definition, the proportion of strate-

gic voters counts the voters for who the two events are true, i.e.,
PSV (C, n,m, p) = EC [

1
n

∑n
i=1 1U

p
i ∩D

p
i
].

The following proposition provides several insights on the propor-
tion of strategic voters at the limits, by showing that the variations of
the dependent events Ui and Di are opposed with respect to p.

Proposition 16. 1. U = EC [
1
n

∑n
i=1 1U

p
i
] is decreasing w.r.t. p.

2. D = EC [
1
n

∑n
i=1 1D

p
i
] is increasing w.r.t. p.

3. PSV (C, n,m, p) ⩽ min(U,D).
4. lim

p→+∞
PSV (C, n,m, p) = 0 and PSV (C, n,m, 0) = 0.

5. lim
n→+∞

PSV (C, n,m, p) = 0 when p is fixed.

Although the previous proposition helps to better understand the
proportion of strategic voters at the limits, it is still difficult to exactly
determine the behavior for other values of p, in particular when PSV

is maximum, because of the dependency between U and D.
Let us now analyze the poll manipulation problems. Let SG (resp.,

SG
k ) denote the associated event of success for the unrestricted (resp.,

restricted) problem with generalized strategic behavior.

Proposition 17. For a balanced culture C(n,Πm), p > 0 and p =
o(n), we have PC(S

G) ⩾ PC(S) and PC(S
G
k ) ⩾ PC(Sk).

It follows from Proposition 17 that Theorems 5 and 7, for suc-
cessful unrestricted poll manipulation, also hold under a general-
ized strategic behavior with the given weak hypotheses. Similarly,
the convergence result toward 1 for the probability of a successful
restricted poll manipulation (Theorem 14) and the generalization of
Theorem 11 can also be extended to a generalized strategic behavior.

7 Conclusion
In the context of political elections where voters are assumed to
be strategic, we have studied the poll manipulation problem: Can
a polling institute lie about candidates’ scores it communicates to
voters in order to influence the outcome of the election? Two vari-
ants are investigated: an unrestricted one where any scores can be
sent, and a restricted one, more realistic, where the polling insti-
tute cannot announce scores too far from the reality. We show that
both problems are computationally hard and answer an open question
from Baumeister et al. [3]. However, we go beyond this worst-case
analysis by using probabilistic tools to balance computational hard-
ness. Under a broad condition on cultures, satisfied by many concrete
preference distributions, we prove a lower bound on the probabil-
ity of success of an easily computable heuristic for the unrestricted
problem. This enables us to obtain a rapid convergence toward 1 of
the manipulation probability, meaning that large elections are highly
manipulable when the polling institute can freely manipulate with-
out altering the trust of voters. When it may not be the case, i.e., in
a restricted context, our asymptotic results show that manipulabil-
ity strongly relies on whether the allowed distance to truthful scores
depends on the election size. Manipulation tends to fail when this
distance is negligible w.r.t. the number of voters. However, when the
distance is significant, e.g., is a given proportion of the election size,
which appears as a very natural assumption, efficient and success-
ful manipulation tends to be always possible, showing that political
elections are highly susceptible to poll manipulation in practice.

Future work should be devoted to studying the generalization of
these results in different directions. Considering other voting rules or
other types of information communicated in the poll would be natu-
ral. Another avenue of work could be to examine different strategic
voting behaviors, such as local dominance [23]. Finally, a challeng-
ing future direction would be to adapt our analysis to dependent cul-
tures such as the Pólya-Eggenberger urn [31].
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Technical Appendix

A Missing Proofs
Proposition 2. If x ∈M \ {e>1 , e>2 }, then every single-peaked cul-
ture C(n,Πm

> ) is balanced for x. If x ∈ {e>1 , e>2 }, then every single-
peaked culture C(n,Πm

> ) which also satisfies PC({≻i |worst≻i =
x}) ⩽ 1

2
, is balanced for x.

Proof. Let > be an axis on M . Observe first that, by definition,
every preference order ≻i which is single-peaked w.r.t. >, must
rank last an extreme candidate of >. Therefore, for every single-
peaked culture C(n,Πm

> ), we must have PC({≻i | worst≻i =
e>1 } ∪ {≻i | worst≻i = e>2 }) = 1. Moreover, since PC({≻i

| worst≻i = e>1 } ∪ {≻i | worst≻i = e>2 }) ⩽ PC({≻i

| worst≻i = e>1 }) + PC({≻i | worst≻i = e>2 }), this implies
that there exists an extreme candidate e>ℓ , for ℓ ∈ [2], such that
PC({≻i | worst≻i = e>ℓ }) ⩾ 1

2
. It follows that, for every can-

didate x ∈ M \ {e>1 , e>2 }, PC(x ≻i e>ℓ ) ⩾ 1
2

, proving the first
part of the statement. Consider now a candidate e>ℓ for ℓ ∈ [2].
Assuming that PC({≻i |worst≻i = e>ℓ }) ⩽ 1

2
, implies that

PC({≻i |worst≻i = e>3−ℓ}) ⩾ 1
2

and thus PC(e
>
ℓ ≻i e

>
3−ℓ) ⩾

1
2

,
proving the second part.

Proposition 3. Any Mallows culture Mϕ,σ is balanced for every
candidate x ∈M \ {worstσ}.

Proof. Consider any candidate x ∈ M \ {worstσ} and the candi-
date ℓ := worstσ . Let Πm

y≻z denote the set of all preferences orders
where y is ranked before z, i.e., Πm

y≻z := {≻i∈ Πm : y ≻i z}. Con-
sider the bijection τ : Πm

ℓ≻x → Πm
x≻ℓ, where for every preference

order ≻i∈ Πm
ℓ≻x, we construct the preference order τ(≻i) ∈ Πm

x≻ℓ

which is the same as ≻i except that the positions of x and ℓ are
swapped. We will show that PMϕ,σ (τ(≻i)) ≥ PMϕ,σ (≻i) for ev-
ery ≻i∈ Πm

ℓ≻x. For this purpose, we will show that dKT (σ,≻i) ≥
dKT (σ, τ(≻i)), by analyzing the differences between≻i and τ(≻i)
in terms of agreement on pairwise comparisons with σ.

By definition, for any arbitrary preference order ≻′
i, we have that

dKT (σ,≻′
i) = dKT ([σ]|M\{x,ℓ}, [≻′

i]|M\{x,ℓ}) + |{y ∈ M : ℓ ≻′
i

y}| + |{y ∈ M \ {ℓ} : x ≻′
i y and yσx}| + |{y ∈ M \ {ℓ} :

y ≻′
i x and xσy}|, where [≻′′

i ]|Y denotes the restriction of the
preference order ≻′′

i on Y ⊆ M . Observe that, by construction,
for any ≻i∈ Πm

ℓ≻x, ≻i and τ(≻i) agree on all pairwise compar-
isons within M \ {ℓ, x}. Therefore, we have dKT ([σ]|M\{x,ℓ}, [≻i

]|M\{x,ℓ}) = dKT ([σ]|M\{x,ℓ}, [τ(≻i)]|M\{x,ℓ}). Moreover, by
construction, for all candidates y such that ℓ τ(≻i) y it implies
that ℓ ≻i y, for all candidates y ∈ M \ {ℓ} such that x ≻i y
it implies that x τ(≻i) y, and for all candidates y ∈ M \ {ℓ}
such that y τ(≻i) x it implies that y ≻i x. It follows that we
have dKT (σ,≻i) − dKT (σ, τ(≻i)) = |{y ∈ M : ℓ ≻i y τ(≻i

) ℓ}| − |{y ∈ M \ {ℓ} : yσx and x τ(≻i) y ≻i x}| + |{y ∈
M \ {ℓ} : xσy and x τ(≻i) y ≻i x}|. By construction, it holds
that |{y ∈ M : ℓ ≻i y τ(≻i) ℓ}| = r≻i(x) − r≻i(ℓ). More-
over, |{y ∈ M \ {ℓ} : yσx and x τ(≻i) y ≻i x}| + |{y ∈
M \ {ℓ} : xσy and x τ(≻i) y ≻i x}| = r≻i(x) − r≻i(ℓ) − 1,
which implies that −(r≻i(x) − r≻i(ℓ) − 1) ⩽ −|{y ∈ M \ {ℓ} :
yσx and x τ(≻i) y ≻i x}| + |{y ∈ M \ {ℓ} : xσy and x τ(≻i

) y ≻i x}| ⩽ r≻i(x) − r≻i(ℓ) − 1. Therefore, in total, we have
1 ≤ dKT (σ,≻i)− dKT (σ, τ(≻i)) ≤ 2(r≻i(x)− r≻i(ℓ))− 1, and
thus dKT (σ,≻i) ≥ dKT (σ, τ(≻i)). By definition of the Mallows
cultureMϕ,σ , we thus havePMϕ,σ (τ(≻i)) ≥ PMϕ,σ (≻i). Hence,
we conclude that PMϕ,σ ({≻′

i: x ≻′
i ℓ}) ≥ PMϕ,σ ({≻′

i: ℓ ≻′
i x}),

and thus PMϕ,σ ({≻′
i: x ≻′

i ℓ}) ≥ 1
2

, implying thatMϕ,σ is bal-
anced for x.

Theorem 4. The unrestricted manipulation problem is NP-complete.

Proof. Membership to NP is straightforward: given communicated
scores, we can efficiently derive the possible unique deviation of each
voter and compute the winner in the deviating profile.

For hardness, we perform a reduction from a variant of EXACT

COVER BY 3-SETS (X3C) known to be NP-complete [15]: Given
a set X = {x1, x2, . . . , x3q} and a set S = {S1, S2, . . . , S3q} of
3-element subsets of X , where each element xi occurs in exactly
three subsets of S, we ask whether there exists an exact cover, i.e.,.,
a subset S′ ⊆ S such that every element of X occurs in exactly
one member of S′. From an instance (X,S) of X3C, we construct
an instance of our unrestricted manipulation problem as follows. For
each element xi, for i ∈ [3q], we create a candidate yi, and for each
subset Sj where j ∈ [3q], we create a candidate cj . We add three
candidates w, z, and t where t is our target candidate.

There are 12q + 7 voters: for each element xi, for i ∈ [3q], we
create one voter Yi, for each subset Sj , for j ∈ [3q], we create three
voters Cr

j where r ∈ [3], and we finally add two voters T ℓ, two
voters Zℓ, two voters W ℓ for ℓ ∈ [2], and one voter D.

Their preferences are defined below, where y(srj ) denotes the can-
didate yi associated with the rth element of subset Sj , and when a
subset of candidates is mentioned, the candidates are ranked accord-
ing to the increasing order of their indices.

Yi: w ≻ yi ≻ z ≻ {yi′}i′ ̸=i ≻ {cj}j ≻ t for i ∈ [3q]
Cr

j : y(srj ) ≻ cj ≻ z ≻ w ≻ {yi′}i′ ̸=i ≻ {cj}j ≻ t for j ∈ [3q], r ∈ [3]

T ℓ: t ≻ z ≻ w ≻ {yi}i ≻ {cj}j for ℓ ∈ [2]

Zℓ: z ≻ w ≻ {yi}i ≻ {cj}j ≻ t for ℓ ∈ [2]

W ℓ: w ≻ z ≻ {yi}i ≻ {cj}j ≻ t for ℓ ∈ [2]
D: w ≻ t ≻ z ≻ {yi}i ≻ {cj}j

Finally, the tie-breaking rule is as follows: w� t� z� y1 � · · ·�
y3q � c1 � · · ·� c3q .

The winner of the election with the truthful ballot profile is can-
didate w. The details of the scores for this truthful ballot profile are
given in the second column of Table 3.

Table 3. Candidates’ scores in the complexity proof of Theorem 4

candidate initial score announced score score after manipulation

yi (i ∈ [3q]) 3 3 3

cj (j ∈ [3q]) 0
3 if Sj ∈ S′ 3 if Sj ∈ S′

0 otherwise 0 otherwise
w 3q + 3 2 2
t 2 2 3
z 2 3 2

winner w z t

We claim that there exists an exact cover in (X,S) iff we can force
the election of candidate t in the constructed instance.

=⇒ : Suppose first that there exists a subset S′ ⊆ S such that
every element of X occurs in exactly one subset of S′. Since |X| =
3q and all elements of S are subsets of X of size 3, we have |S′| = q.
Let us consider manipulated communicated scores which differ from
the sincere ones by taking 3q + 1 votes initially given to w to give
one additional vote to z and three votes to cj for each Sj ∈ S′.
These scores are summarized in the third column of Table 3. By the
tie-breaking rule, candidate z is the announced winner.

It follows from these communicated scores that all candidates are
potential winners except the candidates cj such that Sj /∈ S′. There-
fore, each voter Yi will deviate from ballot w to ballot yi, for i ∈ [3q],



all voters Cr
j such that Sj ∈ S′ will deviate from ballot y(srj ) to bal-

lot cj , and voter D will deviate from ballot w to ballot t. Since S′

is an exact cover, each additional vote for yi by voter Yi will be bal-
anced by the removal of one vote for yi by the voter Cr

j , such that
Sj ∈ S′ and y(srj ) = yi, who deviates from yi to cj . Therefore, in
total, these deviations will remove 3q + 1 votes from w, give three
votes to q candidates cj and add one vote to t, leading to the victory
of t, as summarized in the fourth column of Table 3.

⇐= : Suppose now that there exist communicated scores such
that the target candidate t becomes the winner after deviations from
the voters. The global idea of the proof is that the only possibility for
communicated scores to lead to the victory of the target candidate t
is to announce candidate z the winner and, as potential winners, the
target candidate t and exactly q candidates cj which correspond to
subsets Sj forming an exact cover of X .

We will first show by disjunction case that the announced winner
can only be candidate z.

Observe that t cannot win if it does not gain any additional vote.
Indeed, for t to win with at most two votes, w cannot get more than
one vote, and all the other candidates more than two votes, which
sums to at most 12q + 3 votes for other candidates, whereas there
would be 12q + 5 voters who do not vote for t, a contradiction. It
follows that t cannot be announced as the winner, and must be a
potential winner. However, by construction of the preferences, the
only voter who can deviate to a ballot t is voter D. Therefore, in the
deviating profile, t can get at most three votes.

If w is announced the winner, then the 3q voters Yi will keep their
vote for w, therefore t can never win with its maximum score of
three, a contradiction.

Let us now analyze the case where the announced winner is a can-
didate yi or cj , by considering the candidates that can be announced
potential winners:
• If candidate z is a potential winner, then at least voters T ℓ and W ℓ

will deviate to it, which leads to at least four votes for z, whereas
t can get at most three votes. Therefore, z cannot be a potential
winner.

• Now, if candidate w is a potential winner, then at least voters T ℓ

and Zℓ will deviate to it, leading to at least four votes for w,
whereas t can get at most three votes. Therefore, w cannot be a
potential winner.

• Now, if a candidate yi′ is a potential winner, for i′ < i or when
cj is the winner, then at least voters T ℓ, Zℓ, and W ℓ, for ℓ ∈ [2],
will deviate to the candidate yi′ , that we call y∗, which is declared
potential winner with the smallest index i′, by construction of their
preferences. Therefore, y∗ would get at least six votes, whereas t
can get at most three votes. Thus, such yi′ cannot be a potential
winner.

• Now, if a candidate yi′ or cj′ is a potential winner, for i′ > i and
yi winner, then voter Yi will keep her vote for w as well as voters
W ℓ for ℓ ∈ [2], which leads to at least three votes for w whereas
w is preferred to t in the tie-breaking rule. Therefore, such yi′ or
cj′ cannot be a potential winner.

• Now, if a candidate cj′ is a potential winner, for j′ < j and cj
winner, then at least voters T ℓ, Zℓ, and W ℓ, for ℓ ∈ [2], will devi-
ate to the candidate cj′ , that we call c∗, which is declared potential
winner with the smallest index j′, by construction of their prefer-
ences. Therefore, c∗ would get at least six votes, whereas t can get
at most three votes. Thus, such cj′ cannot be a potential winner.

• Now, finally, if a candidate cj′ is a potential winner, for j′ > j
and cj winner, then all voters Yi will keep their vote for w, which

leads to at least 3q votes for w, whereas t can get at most three
votes. Therefore, such cj′ cannot be a potential winner.

• It follows that t is the only potential winner, and thus all voters Yi

keep their vote for w, which leads to at least 3q votes for w, and
thus t cannot win, a contradiction.
Consequently, the announced winner must be candidate z. Since

t can get at most three votes, and w initially gets 3q + 3 votes, at
least 3q + 1 votes must be removed from w (w is preferred to t
in the tie-breaking). Voters W ℓ will not deviate from w if z is the
announced winner, therefore all voters Yi and D must deviate from
w. It follows that each candidate yi must be a potential winner as
well as t. However, for each candidate yi, we need that at least one
of the three voters Cr

j such that y(srj ) = yi deviates from her initial
vote to yi, otherwise yi would get four votes and t could not win. For
such a voter Cr

j to deviate, the only solution is to make candidate cj
a potential winner. By construction, it follows that we need to find
a subset of candidates cj (to make them potential winners) such that
the associated subsets Sj entirely cover the elements in X . Thus, we
need to make at least q candidates cj potential winners.

Let us now analyze the compatible scores that can be communi-
cated. If z is the announced winner with at most two votes, then by
the tie-breaking rule, candidates w and t can get at most one vote,
and all the other candidates at most two votes, which sums to at most
12q + 2 votes for other candidates, whereas there would be 12q + 5
voters who do not vote for z, a contradiction. If z is the announced
winner with at least four votes, then to be potential winners, t should
get at least three votes, all candidates yi at least four votes, and at
least q candidates cj at least four votes, which sums to at least 16q+3
votes for other candidates, whereas there are 12q + 7 voters in total,
a contradiction. Consequently, z must be announced the winner with
exactly three votes, and thus t must be announced with two votes,
all candidates yi with three votes, and at least q candidates cj with
three votes. The only possibility to announce such scores is to take
3q + 1 votes from w and to distribute them to give three votes to q
candidates cj and one vote to candidate z. The only possible margin
then is given by the two remaining votes for w, however they are not
sufficient to make another candidate cj a potential winner. Hence,
there are exactly q candidates cj which are potential winners such
that the associated subsets of Sj entirely cover X , which means that
the union of such subsets is an exact cover.

Theorem 5. For a balanced culture C(n,Πm), there exists ℓ ∈
BC(x

∗) such that the probability of success of the sub-heuristic
2PW-H(x∗, ℓ), is as follows: PC(S2PW-H(x∗ , ℓ)) ⩾ 1 − 2(m −
2)(e−2n(px∗,ℓ−qx∗,ℓ,j∗ )2) where:
• px∗,ℓ := PC(x

∗ ≻i ℓ),
• rx∗,ℓ,j := PC({ℓ ≻i x

∗} ∩ {j = top≻i}), for j ̸= ℓ,
• qx∗,ℓ,j :=

px∗,ℓ+rx∗,ℓ,j

2
,

• j∗ := argminj∈M\{x∗,ℓ}PC(Yℓ,j ⩽ X−ℓ).
In particular, the probability of success of the global heuristic satis-
fies the same lower bound.

Proof. For our target candidate x∗ and a balanced culture C(n,Πm),
let us consider a candidate ℓ ∈ BC(x

∗). Since ℓ ∈ BC(x
∗), ℓ will

never be better and we can simplify the equality:PC(S2PW-H(x∗ , ℓ)) =
PC(∀j ∈ M \ {x∗, ℓ}, Yℓ,j ⩽ X−ℓ). Our goal is to show a lower
bound to PC(∀j ∈M \ {x∗, ℓ}, Yℓ,j ⩽ X−ℓ). For this purpose, the
following lemma will be useful.

Lemma 18 (Bonferroni [5]). P(
⋂n

i=1 Ai) ⩾
∑n

i=1P(Ai) − (n −
1).



We deduce from Bonferroni’s inequality (Lemma 18) that
PC(∀j ∈ M \ {x∗, ℓ}, Yℓ,j ⩽ X−ℓ) ⩾

∑
j∈M\{x∗,l}PC(Yℓ,j ⩽

X−ℓ) − (m − 2 − 1) ⩾
∑

j∈M\{x∗,ℓ} minj∈M\{x∗,ℓ}PC(Yℓ,j ⩽
X−ℓ)− (m− 3) ⩾ (m− 2) ·minj∈M\{x∗,ℓ}PC(Yℓ,j ⩽ X−ℓ)−
(m − 3). By considering j∗ := argminj∈M\{x∗,ℓ}PC(Yℓ,j ⩽
X−ℓ), we then have that PC(∀j ∈ M \ {x∗, ℓ}, Yℓ,j ⩽ X−ℓ) ⩾
(m − 2) · (PC(Yℓ,j∗ ⩽ X−ℓ) − 1) + 1. Let us now treat the term
PC(Yℓ,j∗ ⩽ X−ℓ). We remark that X−ℓ follows a binomial distri-
bution of parameters n and px∗,ℓ and Yℓ,j∗ follows a binomial distri-
bution of parameters n and rx∗,ℓ,j∗ , where px∗,ℓ and rx∗,ℓ,j are de-
fined as px∗,ℓ = PC(x

∗ ≻i ℓ) and rx∗,ℓ,j = PC({ℓ ≻i x
∗}∩{j =

top≻i}), for every j ̸= ℓ. We introduce qx∗,ℓ,j∗ :=
px∗,ℓ+rx∗,ℓ,j∗

2

to lower bound our probability as follows: PC(Yℓ,j∗ ⩽ X−ℓ) ⩾
PC({Yℓ,j∗ < qx∗,ℓ,j∗ · n}

⋂
{X−ℓ > qx∗,ℓ,j∗ · n}). We use again

Bonferroni’s inequality (Lemma 18) to get: PC(Yℓ,j∗ ⩽ X−ℓ) ⩾
PC({Yℓ,j∗ < qx∗,ℓ,j∗ · n}) + PC({X−ℓ > qx∗,ℓ,j∗ · n})− 1. We
then use the following lemma to treat each term of this inequality.

Lemma 19 (Hoeffding [20]). Let Xk be some independent real ran-
dom variables, and (ak)k∈[n] and (bk)k∈[n] two real sequences such
that for every k ∈ [n], we have ak < bk andP(ak ⩽ Xk ⩽ bk) = 1.

Then, for every t > 0,P(Sn−E(Sn) ⩾ t) ⩽ e
−2t2∑n

k=1
(bk−ak)2 , where

Sn =
∑n

k=1 Xk.

Applying the inequality from Lemma 19 on Bernoulli variables
Xk with ak = 0 and bk = 1, for every k ∈ [n], and t = x ·

√
n, we

get: P(Sn − E(Sn) ⩾ x ·
√
n) ⩽ e−2x2

, where Sn =
∑n

i=1 Xk.
Now, by taking x =

√
n · (qx∗,ℓ,j∗ − rx∗,ℓ,j∗) and applying

Lemma 19 to our sum of Bernoulli variables Yℓ,j∗ (i.e., a binomial
of parameters n and rx∗,ℓ,j∗ ), we get: PC(Yℓ,j∗ < qx∗,ℓ,j∗ · n) =
1 − PC(Yℓ,j∗ ⩾ qx∗,ℓ,j∗ · n) = 1 − PC(Yℓ,j∗ − rx∗,ℓ,j∗ · n ⩾
qx∗,ℓ,j∗ · n − rx∗,ℓ,j∗ · n) = 1 − PC(Yℓ,j∗ − rx∗,ℓ,j∗ · n ⩾
√
n(
√
n(qx∗,ℓ,j∗−rx∗,ℓ,j∗))) ⩾ 1−e−2n(qx∗,ℓ,j∗−rx∗,ℓ,j∗ )2 . Now,

we want to apply a similar treatment to variables X−ℓ. Let us de-
note X ′

−ℓ = n − X−ℓ the random variable following a binomial
distribution of parameters n and 1 − px∗,ℓ. We have: PC(X−ℓ >
qx∗,ℓ,j∗ · n) = PC(n − X ′

−ℓ > qx∗,ℓ,j∗ · n) = PC(X
′
−ℓ <

n − qx∗,ℓ,j∗ · n) = 1 − PC(X
′
−ℓ − (1 − px∗,ℓ) · n ⩾ (1 −

qx∗,ℓ,j∗) · n− (1− px∗,ℓ) · n) = 1−PC(X
′
−ℓ − (1− px∗,ℓ) · n ⩾

√
n
√
n(px∗,ℓ − qx∗,ℓ,j∗)) ⩾ 1 − e−2n(px∗,ℓ−qx∗,ℓ,j∗ )2 . Putting

the last two inequalities together we get: PC(Yℓ,j∗ ⩽ X−ℓ) ⩾

1− e−2n(px∗,ℓ−qx∗,ℓ,j∗ )2 − e−2n(qx∗,ℓ,j∗−rx∗,ℓ,j∗ )2 . Coming back
to the first work of the proof we have: PC(S2PW-H(x∗ , ℓ)) ⩾ 1 −
(m−2)(e−2n(px∗,ℓ−qx∗,ℓ,j∗ )2 + e−2n(qx∗,ℓ,j∗−rx∗,ℓ,j∗ )2). Finally,
since qx∗,ℓ,j∗ is defined as the middle between px∗,ℓ and rx∗,ℓ,j∗ ,
we can simplify the inequality: PC(S2PW-H(x∗ , ℓ)) ⩾ 1 − 2(m −
2)e−2n(px∗,ℓ−qx∗,ℓ,j∗ )2 .

Theorem 9. The restricted manipulation problem is W[1]-hard.

Proof. From an instance (G = (V,E), k) of k-Clique where n :=
|V |, m := |E| and, w.l.o.g., 2 < k < n−1, we construct an instance
of our restricted poll manipulation problem as follows.

For each vertex vi ∈ V , we create a candidate vi, and for each
edge {vi, vj} ∈ E, we create a candidate eij (we suppose i < j for
this notation). We add three other candidates w, t, and z. In total, we
thus have n+m+ 3 candidates.

Let K := (n−k)k. For each vertex vi ∈ V , we create k voters U ℓ
i

for ℓ ∈ [k], and K−1−δ(vi) voters Dℓ
i for ℓ ∈ [K−1−δ(vi)] (by

our assumption on k, this quantity cannot be negative), where δ(vi)
denotes the degree of vertex vi in G.

For each edge {vi, vj} ∈ E, we create two voters F i
ij and F j

ij ,
and K − 2 voters Eℓ

ij for ℓ ∈ [K − 2]. Finally, we add K voters T ℓ

for ℓ ∈ [K] and K − 1 voters Zℓ for ℓ ∈ [K − 1].
The preferences of the voters over the candidates are described

below, for each i ∈ [n], and each {vp, vq} ∈ E:
U ℓ

i : w ≻ vi ≻ z ≻ {vj}j ̸=i ≻ {er,s}{r,s} ≻ t for ℓ ∈ [k]
F p
pq: vp ≻ epq ≻ z ≻ w ≻ {vj}j ̸=p ≻ {er,s}{r,s}≠{p,q} ≻ t

F q
pq: vq ≻ epq ≻ z ≻ w ≻ {vj}j ̸=q ≻ {er,s}{r,s}≠{p,q} ≻ t

Dℓ
i : vi ≻ z ≻ w ≻ {vj}j ̸=i ≻ {er,s}{r,s} ≻ t for ℓ ∈ [K − 1− δ(vi)]

T ℓ: t ≻ z ≻ w ≻ {vj}j ≻ {er,s}{r,s} for ℓ ∈ [K]

Eℓ
pq: epq ≻ z ≻ w ≻ {vj}j ≻ {er,s}{r,s}≠{p,q} ≻ t for ℓ ∈ [K − 2]

Zℓ: z ≻ w ≻ {vj}j ≻ {er,s}{r,s} ≻ t for ℓ ∈ [K − 1]

Finally, the tie-breaking rule is as follows: z � t� · · ·� w.
The winner of the election with the truthful ballot profile is can-

didate w. The details of the scores for this truthful ballot profile are
given in the second column of Table 4.

Table 4. Candidates’ scores in the complexity proof of Theorem 9

candidate initial score announced score score after manipulation

vi (i ∈ [n]) K − 1
K if vi ∈ S K if vi ∈ S

K − 1 otherwise K − 1 otherwise

eij ({vi, vj} ∈ E) K − 2
K if vp, vq ∈ S K if vp, vq ∈ S
K − 2 otherwise K − 2 otherwise

w kn K K
t K K − 1 K
z K − 1 K K − 1

winner w z t

We claim that G admits a clique of size k iff we can force the
election of candidate t by announcing scores which differ from the
truthful ones by at most k2 + 1 vote changes.

=⇒ : Suppose first that there exists a subset of vertices S ⊆ V
such that S is a k-Clique of G, i.e., |S| = k and {vi, vj} ∈ E for
every vi, vj ∈ S. Let us consider manipulated communicated scores
which differ from the sincere ones by taking k2 votes initially given
to w in order to give one additional vote to each vi ∈ S (there are
k such candidates) and two additional votes to each eij such that
vi, vj ∈ S (there are k(k−1)

2
such candidates), and finally by taking

one vote initially given to t in order to give it to z. In total, the com-
municated scores differ from the sincere ones by exactly k2 +1 vote
changes.

In the manipulated scores, z is winning with K votes thanks to
the tie-breaking, while only the k candidates vi corresponding to the
vertices of the clique are announced as potential winners with K
votes, as well as the k(k − 1)/2 candidates corresponding to the
edges of the clique, and candidate w. These manipulated scores are
summarized in the third column of Table 4.

It follows from these communicated scores that all voters U ℓ
i such

that vi ∈ S deviate from w to vi. By these deviations, candidate w
loses k2 votes, and thus obtains in total K votes, while each candi-
date vi ∈ S gains k votes. However, by definition of the clique, for
each vi ∈ S, there are exactly k − 1 voters F i

ij (or F i
ji) who will

deviate from vi to the potential winner eij (or eji) corresponding to
an edge incident to vi. Therefore, each vi ∈ S also loses k−1 votes,
and thus obtains in total K votes. Note that, by these deviations, each
candidate eij such that vi, vj ∈ S gains two additional votes and thus
obtains in total K votes. No other deviation is possible because all
remaining voters prefer z to all potential winners that are not at top
of their preferences. The scores after all deviations are summarized
in the fourth column of Table 4. The maximum score is K, which
is obtained by w, k candidates vi, and k(k−1)

2
candidates eij , and



t. Candidate t is favored by the tie-breaking among these candidates
and thus wins the election.

⇐= : Suppose now that there exist communicated scores such
that the target candidate t becomes the winner after deviations from
the voters. The global idea of the proof is that the only possibility for
communicated scores to lead to the victory of the target candidate t
is to announce candidate z the winner and, as potential winners, k
candidates vi, as well as k(k − 1)/2 candidates epq , such that for
each potential winner vi, there are k − 1 potential winners eij (or
eji) corresponding to edges incident to vi.

We will first prove that z must be announced as the winner. Ob-
serve that no voter can deviate to t because every voter, except all
voters T ℓ who already vote for t, ranks it last. It follows that we
need that at least k2 voters U ℓ

i , who currently vote for w, deviate to
another candidate, and thus w cannot be announced as the winner.

Let us analyze the case where the announced winner would be a
candidate vi, epq or candidate t, by considering the candidates that
can be announced potential winners:
• If candidate z or w is a potential winner, then at least all voters

Dℓ
i and all voters Eℓ

rs (except voters Eℓ
pq if epq is announced as

the winner) would deviate to z if z is a potential winner or to w
otherwise, and thus z or w would gain too many votes compared
to t and t would never win. Therefore, none of them is a potential
winner.

• Now, if a candidate vi′ is a potential winner, for i′ < i or when
epq or t is the winner, then all voters Dℓ

i and all voters Eℓ
rs (except

voters Eℓ
pq if epq is announced as the winner) would deviate to

such candidate vi′ , that we call v∗, which is declared potential
winner with the smallest index i′. Thus, such v∗ would gain too
many votes compared to t and t would never win. Therefore, such
vi′ cannot be a potential winner.

• Now, if a candidate vi′ or ers is a potential winner, for i′ > i and
vi winner, then all voters U ℓ

i′′ , for i′′ ̸= i′, would keep their vote
for w and thus w would have too many votes compared to t and t
would never win. Therefore, such vi′ or ers cannot be a potential
winner.

• Now, if a candidate ers is a potential winner, for {r, s} < {p, q}
when epq winner or for t winner, then at least all voters Dℓ

i and all
voters Eℓ

rs (except voters Eℓ
pq if epq is announced as the winner)

would deviate to such candidate ers, that we call e∗, which is de-
clared potential winner with the smallest index {r, s}. Therefore,
e∗ would get too many votes compared to t and t would never win.
Thus, such ers cannot be a potential winner.

• Now, finally, if a candidate ers is a potential winner, for {r, s} >
{p, q} and epq winner, then all voters U ℓ

i′ would keep their vote
for w and thus w would have too many votes compared to t and t
would never win. Therefore, such ers cannot be a potential winner.

• It follows that t is the only potential winner, and thus all voters
U ℓ

i′ keep their vote for w. Thus, w has too many votes compared
to t and t cannot win, a contradiction.

Hence the communicated scores must announce z as the winner.
Since z is ranked among the first two most preferred candidates

by all voters Dℓ
i , T ℓ, Eℓ

pq and Zℓ, none of these voters will deviate.
Recall that we need at least k2 voters U ℓ

i (for i ∈ [n] and ℓ ∈ [k])
who deviate to another candidate, and the only candidate other than
their top candidate that voters U ℓ

i prefer to z is vi, for all ℓ ∈ [k].
Therefore, we need to announce at least k candidates vi as potential
winners. In such a way, each chosen candidate vi gains k additional
votes, whereas it initially had K − 1 votes from voters Dℓ

i , who
cannot deviate, and from voters F i

ij (or F i
ji) for each edge {vi, vj} ∈

E. Since t will have at most K votes, we need at least k − 1 voters

F i
ij (or F i

ji) who deviate from ballot vi. The only other candidate that
such voters prefer to z is candidate eij (or eji). Therefore, for each
chosen vi potential winner, we also need to announce as potential
winners at least k − 1 candidates eij (or eji) which correspond to
edges incident to vi.

Recall that we can only announce scores which differ from the
truthful ones by at most k2 + 1 vote changes. If we announce z the
winner with at most K−1 votes, then we need to remove at least k2+
1 votes for w and one vote for t, therefore we have already exceeded
our budget. If we announce z the winner with at least K + 1 votes,
then we need to add two votes to at least k candidates vi, three votes
to at least k(k−1)

2
candidates eij and one vote to z, therefore we have

already exceeded our budget. It follows that we need to announce z
the winner with exactly K votes. In this case, we need to add one
vote to z, one vote to at least k candidates vi and two votes to at
least k(k−1)

2
candidates eij . Therefore, to meet our budget, we need

to declare exactly k candidates vi and exactly k(k−1)
2

candidates eij
as potential winners, in such a way that for potential winner vi there
exist k − 1 potential winners eij corresponding to incident edges.
Hence, the chosen candidates vi correspond to a k-clique in G.

Proposition 10. The restricted manipulation problem is in XP w.r.t.
the maximum distance k to the truthful scores. More precisely, it can
be solved by an algorithm which runs in time Θ(m2k+1 · n).

Proof. We give an upper bound to |Ik|. We denote that any move of
voters is characterized by the origin and the destination candidate.
Since our distance counts the number of swaps, one swap is defined
by choosing two candidates, we then get

(
m
2

)
= m(m−1)

2
and |I1| ⩽

m(m−1)
2

. We start from sT and iterate the upper bound argument and
we get: |Ik| ⩽ (m(m−1)

2
)k ⩽ m2k. It is then enough to visit every

score of Ik and add the winner determination in Θ(m · n). At the
end, we get Θ(m2k+1 · n).

Theorem 11. For any culture C(n,Πm), if the maximum distance
k to the truthful scores is such that k = o(

√
n) and the target can-

didate x∗ is not winning in the initial score, then the probability of
existence of a successful poll manipulation to elect x∗ tends toward
zero, i.e., limn→∞PC(Sk) = 0.

Proof. Let us start by identifying the probability law of the truthful
scores.

Observation 20. For a culture C(n,Πm), the truthful scores sT

follow a multinomial law Multi(p, n) where q = (q1, . . . , qm) and
qj := PC({WP (s

T ) = j}), for every j ∈M .

The truthful scores follow a multinomial law because there are n
voters’ preferences drawn independently at random with the same
law, and we have m possibilities for the most preferred candidate
of each voter, and these are the only necessary elements to compute
scores sT . We will use the following result on multinomial laws.

Lemma 21 (Severini [30]). If (Nn)n⩾0 is a multinomial law inRm

with parameters n and q = (q1, . . . , qm) and N (0;K) a multivari-
ate normal distribution then 1√

n
(Nn − nq) −→

n→+∞
N (0;K), where

Ki,j = qiδi,j − qiqj , for every 1 ≤ i, j ≤ m, with δi,j = 1 if i = j
and δi,j = 0 otherwise.

Let c∗ be the truthful winner, i.e., c∗ := WP (b
T ). Informally, a

necessary condition for the existence of a successful manipulation
with the two-candidate heuristic is that there is at least one candi-
date that is sufficiently close to the winner. The pair of candidates



would then be this candidate and the current winner. Of course,
this is not necessarily sufficient, as the pair may not be the right
one. However, we will see that this necessary condition occurs with
probability 0, and that’s enough for us to conclude. We then write
Sk ⊂ {

⋃
z ̸=c∗{|s

T
c∗ − sTz + 1c∗�z| ≤ k}}.

We will analyze the probability of the second event to get an
upper bound on the probability of success of the restricted poll
manipulation problem. By using Observation 20 and Lemma 21
with Nn = sT , we get: 1√

n
(sT − nq) −→

n→+∞
N (0;K), where

Ki,j = qiδi,j − qiqj , for every 1 ≤ i, j ≤ m. We denote
N (0;K) = (N1, . . . ,Nm) and remark that each Nj follows a
Gaussian law. For any z ∈M \{x∗}, we have limn→+∞PC(|sTc∗−
sTz + 1c∗�z| ≤ k) = limn→+∞PC(| 1√

n
sTc∗ − nqc∗ − 1√

n
sz +

nqz +
1c∗�z√

n
+ n(qc∗ − qz)| ≤ k√

n
). Combining this equal-

ity with the previous convergence result using the test function
Φ(sT ) = 1

{| 1√
n
sT
c∗−nqc∗− 1√

n
sTz +nqz+

1c∗�z√
n

+n(qc∗−qz)|≤ k√
n
}

and lim
n→+∞

k√
n

= 0 by assumption, we deduce that

limn→+∞PC(| 1√
n
sTc∗ − nqc∗ − 1√

n
sTz + nqz +

1c∗�z√
n

+ n(qc∗ −
qz)| ≤ k√

n
)) = PC(|Nc∗ −Nz +

1c∗�z√
n

+n(qc∗ − qz)| ≤ 0) = 0.
Therefore, limn→+∞PC(|sTc∗ − sTz + 1c∗�z| ≤ k) = 0.

It follows for the probability of the success event that
limn→+∞PC(Sk) ⩽ limn→+∞PC(

⋃
z ̸=c∗ |s

T
c∗ − sTz +1c∗�z| ≤

k) ≤ limn→+∞
∑

z ̸=c∗ PC(|sTc∗−sTz +1c∗�z| ≤ k) = 0. We then
get: lim

n→+∞
PC(Sk) = 0, which concludes the proof.

Proposition 16. 1. U = EC [
1
n

∑n
i=1 1U

p
i
] is decreasing w.r.t. p.

2. D = EC [
1
n

∑n
i=1 1D

p
i
] is increasing w.r.t. p.

3. PSV (C, n,m, p) ⩽ min(U,D).
4. lim

p→+∞
PSV (C, n,m, p) = 0 and PSV (C, n,m, 0) = 0.

5. lim
n→+∞

PSV (C, n,m, p) = 0 when p is fixed.

Proof.
1-2. The statements follow from the inclusions Up′

i ⊆ Up
i and Dp

i ⊆
Dp′

i , for each p′ > p.
3. Using the inclusions U ∩D ⊂ U and U ∩D ⊂ D, we show that:
PSV (C, n,m, p) ⩽ U and PSV (C, n,m, p) ⩽ D.

4. If p is maximum, then all candidates are potential winners and
thus each voter keeps her truthful vote, while when p = 0 there
are no potential winners to deviate to.

5. Using Lemma 21, we know that the winner c∗ and any other can-
didate z will be spread out at least of order

√
n asymptotically.

We then deduce that there are no potential winners other than the
winner in that case, since p is fixed.

Proposition 17. For a balanced culture C(n,Πm), p > 0 and p =
o(n), we have PC(S

G) ⩾ PC(S) and PC(S
G
k ) ⩾ PC(Sk).

Proof. In an idea similar to the proof of Theorem 14, for each score
of a given type in the initial setting, we can always choose a score
of the same type which works for the generalized strategic behav-
ior, since they would trigger the same deviations. Indeed, even if the
polling institute is not sending the same score, it might construct a
score with the same potential winners and the same winner since p is
negligible against n.

B Heuristics and Figures

Algorithm 1: Global Heuristic
Input: (N,M,≻,�), Target candidate x∗

1 foreach ℓ ∈M \ {x∗} do
2 (is_successful, s)← 2PW-H(x∗, ℓ);
3 if is_successful then return (True, s) ;

4 return (False,None)

Algorithm 2: 2PW-H(x∗, ℓ)
Input: (N,M,≻,�), Target candidate x∗, Candidate ℓ

1 s←m-vector with zeros; R← n;
2 foreach j ∈M \ {x∗, ℓ} do
3 if ∃i ∈ N such that top≻i = j then sj ← 1; R← R− 1;

4 sx∗ ← ⌊R
2
⌋; sℓ ← ⌊R2 ⌋; j

∗ ← argminj∈M\{x∗,ℓ} sj ;
5 if x∗ � ℓ and R is even then sx∗ ← sx∗ − 1; sj∗ ← sj∗ + 1;
6 if x∗ � ℓ and R is odd then sℓ ← sℓ + 1;
7 if ℓ� x∗ and R is odd then sj∗ ← sj∗ + 1;
8 ifWP (b

s) = x∗ then return (True, s);
9 else return (False,None);

Algorithm 3: Restricted 2PW-H(x∗, ℓ)
Input: (N,M,≻,�, k), Target candidate x∗, Candidate ℓ

1 s← sT ; R← 0 ;
2 while ∃c ∈M \ {ℓ} s.t. sc ≥ sℓ − 1c̸=x∗�ℓ + 1ℓ�c=x∗ and

R < k do
3 y ← argminx∗,ℓ{sx∗ , sℓ − 1}; sy ← sy + 1;

sc ← sc − 1; R← R+ 1;

4 while sx∗ < sℓ − 1x∗�ℓ and R < k do
5 j∗ ← argmaxj∈M\{ℓ} sj ;
6 if sℓ > maxj∈M\{ℓ} sj + 2 then j∗ ← ℓ;
7 sx∗ ← sx∗ + 1; sj∗ ← sj∗ − 1; R← R+ 1;

8 ifWP (b
s) = x∗ then return (True, s);

9 else return (False,None);
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Figure 1. Proportion of strategic voters depending on the pivotal threshold
p in an election with 100 voters and 4 candidates under impartial culture.


