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Abstract. We consider the problem of poll manipulation in politi-
cal elections. In the context of strategic voting, we are interested in
whether a polling institute can manipulate the information it com-
municates to voters in order to influence the outcome of the election.
We start with a version of the problem where the polling institute
is allowed to send any score to voters. Then, for realistic reasons,
we investigate a restricted version in which the polling institute can-
not announce scores which are too far from the truthful ones. While
we show that both decision problems are computationally hard, we
go beyond this worst-case complexity analysis by using probabilistic
tools to address the possibility of successful and efficient manipula-
tion in practice, w.r.t. several natural preference distributions.

1 Introduction

Strategic voting [23] is a major issue in political elections. Ideally,
one would like to avoid such a strategic behavior. However, by the
Gibbard-Satterthwaite theorem [16, 29], no reasonable voting rule
is immune to voter manipulation. Since we cannot escape strategic
voting, one way to tackle manipulation is to study it via a game-
theoretical analysis. This approach has been followed by several
works in computational social choice [6]. Notably, in iterative vot-
ing [22], the idea is to analyze the convergence and the quality of
a sequential process where voters are allowed to make successive
strategic deviations. In the classical iterative voting framework [24],
complete knowledge is assumed, in the sense that voters are aware
of all others’ current ballot, sometimes even of their full preferences.
However, this assumption is highly unrealistic and does not capture
real scenarios with large electorates, such as political elections.

The question of the information available to the voters is key and
has a strong impact on the manipulability of voting processes [11,
28]. To deal with partial information in voting, one can naturally fol-
low a Bayesian approach by considering a probability distribution
over a set of possible preference orders for other voters [26, 19]. Al-
ternatively, a set of possible preference profiles can be derived from
partial votes [8, 9] or from a given maximum distance to the voters’
actual preferences [1]. Another possibility is to assume local infor-
mation for the voters, which is captured by a social network [18].
Finally, an aggregated global information coming from opinion polls
can be communicated to voters [3, 11, 28, 33].

Following this latter line of research, in this article, inspired by
political elections, we assume that voters receive only a global in-
formation about the voting intentions within the population, which
is communicated through opinion polls. Voters trust the information
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communicated in the polls and compute their best response ballot on
the basis of this information. This confidence in the polls grants an
important power to the polling institute which disseminates it, raising
the natural question of poll manipulation. Indeed, a polling institute
might have its own interests in the election and try to orient votes
toward them. This problem is close to the question of election con-
trol [13], where an external agent aims to alter the outcome of the
election, but here no structural change is made on the election.

In the line of seminal works analyzing the complexity of voter
manipulation [2], one can analyze the complexity of the poll ma-
nipulation problem. However, computational intractability may not
constitute a relevant barrier to manipulation, as it relies on worst-
case analysis [12]. Therefore, to complement complexity results,
an average-case study using a probabilistic approach is relevant, as
it has been widely investigated for voter manipulation (see, e.g.,
[14, 21, 27, 35]). In particular, the asymptotic study is meaningful
since political elections are characterized by a large number of vot-
ers. Considering election control problems, as far as we know, this
approach has been surprisingly neglected. A notable exception is a
recent work by Xia [34] which investigates the likelihood of manip-
ulability for several coalition influence problems, including control
by adding or deleting votes. Up to our best knowledge, no such study
has been conducted so far for the poll manipulation problem.

In this article, we study the constructive poll manipulation prob-
lem where the polling institute wishes to favor a specific candidate by
broadcasting manipulated candidates’ scores. This problem has been
introduced by Wilczynski [33] and further extended by Baumeister
et al. [3], who also consider the destructive variant where the polling
institute aims to prevent the election of a given candidate. While both
works consider a framework where voters are embedded in a social
network and analyze the complexity of the problem with respect to
the structure of the graph, we consider a simpler model with no social
network, which clarifies the role of the opinion polls. In particular,
we analyze the following two versions of the problem. In the unre-
stricted problem, the polling institute is free to send any score in-
formation. The restricted problem considers a more realistic context
where only score information that would be close enough to truth-
ful scores are allowed. The idea for this second problem is for the
polling institute to lie in a reasonable manner, by submitting realis-
tic scores, not too far from a ground truth that may correspond to
the results of a past election, or another poll. Such restrictions help
to gain the trust and confidence from the voters. We prove that both
versions of the problem are computationally hard, answering an open
question from Baumeister et al. [3], but also analyze the probability
of existence of a successful and efficiently computable poll manip-



ulation. For this latter purpose, we introduce a natural condition on
statistical cultures which is satisfied by most natural preference dis-
tributions [31]. In fact, we exhibit a simple heuristic and prove its
success for the unrestricted problem, which means that, without re-
striction, the polling institute can almost always efficiently influence
large elections. For the restricted manipulation problem, we prove
that if the allowed distance is negligible with respect to the number
of voters, then no manipulation is possible. However, when this dis-
tance becomes significant, e.g., when it is a fixed proportion of the
number of voters, easy manipulation is almost always successful in
large elections. Finally, we show that most results still hold when
assuming a more general strategic behavior for voters [33].

2 The Model

We first present the poll manipulation problem in the context of
strategic voting.

2.1 Avoting system

For any positive integer k, let [k] denote the set {1,...,k}. Let N be
a set of voters where N = [n], and M be a set of candidates where
M = [m]. Since the goal is to study strategic voting in large political
elections, we naturally assume that n > m > 2 (by the Gibbard-
Satterthwaite theorem, voting rules are susceptible to manipulation
only when there are more than two candidates). Each voter i € N
has preferences over candidates represented by a linear order »-; over
candidates. Let top,, and worst,, denote the most preferred and
worst candidates, respectively, of voter ¢ € N, i.e., top-, >;
and x >; worst,, for every candidate x € M. The rank of a
given candidate x in a preference order >; is denoted by r.; (), i.e.,
re,(z) := |{y € M : y =; x}|. We use the Kendall tau distance to
evaluate the similarity between two preference orders, by counting
the number of pairwise comparisons on which the two orders dis-
agree, i.e., distgr (=i, =;) = |{(z,y) € M? : 2 =; yand y >,
x}|. The set of linear orders >; for all voters ¢ € N is called a pref-
erence profile and is denoted by . Let us denote by N*" ¥ the set of
voters who prefer x over y, i.e., N*7 ¥ :={i € N:x =; y}.

The winner of an election is determined by the Plurality voting rule
where ties are broken lexicographically. Let b; € M denote the bal-
lot of voter s and b € M™ denote the ballot profile. The ballot profile
b from which b; is excluded is denoted by b_;. The winner under Plu-
rality of the ballot profile b is Wp(b) € argmaxzenr sz (b), where
sz(b) := |{i € N : b; = z}| and a lexicographic tie-breaking, de-
noted by >, is used if necessary. By abuse of notation, we sometimes
directly write Wp(s) to refer to the winner of a score vector s. Let
b denote the truthful ballot profile, i.e., b} >;  for every candidate
x € M and voteri € N, and s denote the candidates’ scores in b7

An election is given by the tuple (N, M, >, ).

2.2 A strategic voting framework

In this model, we consider an iterative voting process where voters
are strategic with respect to the information they get, which only con-
sists in the score broadcast by the polling institute. Like some previ-
ous works in iterative voting [3, 33], we make the assumption that
voters trust the announced result by the polling institute but, in con-
trast, we assume that voters have no other local information on which
to rely. Let us describe more in details the voters’ strategic behavior.

Initially, all voters vote sincerely since they have no information
yet, therefore the initial ballot profile ° is exactly the truthful bal-
lot profile bT. Then, the polling institute sends the results of this

initial election by announcing a score vector s of size m such that
Ej cm Si = m, where s; is supposed to stand for the score of candi-
date j € M in the initial election. Let s~¢ denote the score vector s
where the truthful ballot of voter 7 has been removed, i.e., s;i = sj,
for every j € M \ {bI}, and sb_T1 = sr — 1. After the score is
announced, every voter considers possible moves from her initial
truthful ballot with respect to that information. Possible deviations
are captured by the notion of potential winners: A candidate y is a
potential winner for voter ¢ w.r.t. announced score vector s if ¢ be-
lieves that voting for y will make candidate y the new winner, i.e.,
s;vip(s,i> — sy’i + Lyp i)y S 1. Let PW? denote the set of
potential winners for voter ¢ w.r.t. announced scores s.

We say that a candidate y is a potential winner if there exists a
voter ¢ such that y € PW;’. By definition, the announced winner
W (s) is also a potential winner. A voter is said to be pivotal if her
considered set of potential winners contains more candidates than the
winner exclusively. We consider the following best response for each
voter ¢ w.r.t. announced score s: ¢ deviates from her current ballot b7
to another ballot supporting candidate y € PW; \ {Wp(s)} if y
is her most preferred candidate within PW;°. Each voter can deviate
at most once since she only gets the information about the scores s
provided by the polling institute, and cannot see the deviations from
other voters (thus the order of voters’ deviations does not matter, they
could even be simultaneous). Hence, the deviation process ends after
at most n steps and converges to a final ballot profile denoted by b°.

2.3 A decision problem of manipulation

In this model, a polling institute sends out a score and then each voter
votes strategically w.r.t. that information, and finally the winner of
the election is computed. We want to describe the behavior of the
polling institute who may have its own interest in the election. Let
2™ be the target candidate of the polling institute, i.e., it wants 2™ to
be elected. Let I be the space of all possible scores that the polling
institute can announce, ie., [ := {s € N™ | 37" s; = n}. We
consider the following poll manipulation problem:

UNRESTRICTED MANIPULATION PROBLEM

Instance:
Question:

Election (N, M, >, 1>), target candidate z* € M
Does there exist a score s € I to announce such that
Wp(b°) = z*?

However, the fact that the polling institute is allowed to send any
score is not very realistic. We use a restricted version of the deci-
sion problem where the distance between the truthful poll and the
one sent by the polling institute is bounded. We use the number
of vote changes to evaluate the distance between possible scores,
ie., d(s,s') = %ZjeM |s; — sj|, for every scores s,s" € I.
Note that this distance is equivalent to the restriction of the ¢; dis-
tance on I divided by 2 and sometimes called the “earth mover dis-
tance" in the literature [23]. We let I, := {s € IN™ | d(s, sT) <
kand ) jem Si = n} be the restricted space of action of the polling
institute. We then analyze the following poll manipulation problem:

RESTRICTED MANIPULATION PROBLEM

Instance:  Election (N, M, >, 1>), target candidate z* € M,
integer k
Question:  Does there exist a score s € I to announce such

that Wp (b°) = z?

A poll manipulation is illustrated in the next example.



Example 1. Let us consider an election (N, M, =, 1>) where N =
{1,...,8}, M = {a,b,c,d, e}, the tie-breaking > follows the al-
phabetical order and the preferences > are as follows:

I: a>=cr-d>=e>b 56: b-d>e>c>a

2: e>br-d>c>a 7: c>=dr-a>=b>e

34 ax-d-b>c-e 8 d>e>a>b>c
The initial truthful scores are given by s° = (3,2,1,1,1) (can-
didates are indexed w.r.t. their alphabetical position). Suppose that
the polling institute communicates the following score vector s™ =
(0,2,2,3,1), at distance 3 to the truthful one. The set of poten-
tial winners w.r.t. s™ is equal to PWfM = {b,c,d} for every
voter i € {1,2,3,4,8}, while PW;M = PWGSM = {c,d} and
PW7SM = {b,d}. Voters 3, 4, 5, 6, 7, and 8 do not have an incentive
to deviate since the announced winner d is their most preferred can-
didate among the potential winners. However, voters 1 and 2 have an
incentive to deviate to a ballot supporting c and b, respectively. After
their deviations, we reach the final scores s> = (2,3,2,1,0) where
b is the winner. Hence, the polling institute can enforce the election
of b, whereas a would remain the winner without poll manipulation.

3 Preliminaries on Voting Cultures

In this section, we present voting cultures that are commonly used in
the literature [31] to represent the distributions of preferences in elec-
tions. We will show that most of them satisfy a general condition on
cultures, which is very useful for the purpose of our paper. Let IT™
be the set of all preference orders for m candidates, and ;€ II™
be voter ¢’s preference order for an arbitrary ¢« € N. We denote as
C(n,I17:,) the probability distribution of drawing n preference or-
ders from II7,, C II"™ to constitute our preference profile. Such a
probability distribution C'(n, I1T,,; ) is called a culture and simply de-
noted by C' when the context is clear, and its associated probability
is denoted by Pc. We use P (a >; b) when it is clear from the
context instead of Pc(>;| a >; b). In the following of the paper,
we consider independent and identical drawings of voters’ prefer-
ences such that we can either look at the distribution C'(n, I17, ;) as a
whole object or n drawings of preferences >;. For technical reasons,
we suppose that there are more than two different candidates which
are ranked first by a preference order with a positive probability to
be drawn under the considered culture. Note that this assumption is
also natural since we focus on strategic voting and manipulation only
occurs with at least three candidates [16, 29].

Definition 1 (Impartial culture). The impartial culture, called 1C,
draws every preference order —; from I1"" with uniform probability.

One can also define variants of impartial cultures which are uni-
form but only on a given subset of IT™, e.g., on single-peaked orders.
A preference profile > is said to be single-peaked [4] if there exists
an axis > on M such that, for every voter ¢ € NN, and each triple of
candidates x > y > z, we have y >; z ory >; z. Let IIT be the set
of single-peaked preference orders w.r.t. a given axis > on M.

Definition 2 (Single-peaked culture). For a given axis > over M,
a culture C(n,117,,;) is said to be single-peaked if C(n,11L.,;) =
C(n,II7).

We might sample single-peaked preference orders by drawing
them uniformly on the restricted space of single-peaked preference
orders ITZ. The associated culture then refers to Walsh’s model [32].
Another way to impartially sample single-peaked preference orders
is to use Conitzer’s model [7] which draws preference orders in ITZ'
so that each candidate has the same chance to be ranked first.

Definition 3 (Mallows culture). For given o € II"" and ¢ € [0,1],
the Mallows culture, called M®°, draws every preference order
with a probability related to its distance to the reference ranking
o, more precisely, P 5.0 (i) = %(Z)diStKT(>'i"’) where Z =

Z}ienm ¢distKT(>7’,,o').

Note that culture M corresponds to the impartial culture.
We introduce below a simple property on cultures which will be
key in the poll manipulation analysis.

Definition 4 (Balanced culture). A distribution C(n,II™) is said to
be balanced for a given candidate ¢ € M if there exists another
sufficiently worst candidate £ € M \ {c}, in the sense that Pc(c >
) > 1. The set of such candidates { for x is denoted by Bc (). In
general, a distribution C'is said to be balanced if it is balanced for
every candidate ¢ € M.

It turns out that all cultures that we consider are balanced.
Proposition 1. The impartial culture is balanced.

Proof. Leti € N be a voter. The impartial culture is balanced for
every candidate because for any pair of candidates x and y, we have
Pic(z =i y) = Prc(y =i ) = 3 since each preference order in
IT™ has the same probability to be drawn. O

For a given axis > on M, let e7” and e5 denote the two extreme
candidates of >.

Proposition 2. Ifz € M \ {e7,e5 }, then every single-peaked cul-
ture C(n, 1) is balanced for x. If x € {e7 , 5 }, then every single-
peaked culture C(n,11T") which also satisfies Pc ({>; |lworsts, =
x}) < 3, is balanced for .

Sketch of proof. We mostly use the following fact: Pc({>;
| worst,, = e7 } U {>i | worst,, =e3}) = 1. =

In particular, the previous proposition shows that both
Walsh’s [32] and Conitzer’s [7] cultures are balanced.

Proposition 3. Any Mallows culture M%° is balanced for every
candidate x € M \ {worsts}.

Sketch of proof. Consider any candidate z € M \ {worst, } and the
candidate ¢ := worst,. Let I}, denote the set of all preference
orders where y is ranked before z, i.e., HZ“;Z = I™ 1y >
z}. Consider the bijection 7 : IIjY , — II7% ,, where for every »;€
IT;Y ., we construct the preference order 7(>;) € II7} , which is the
same as >; except that the positions of = and ¢ are swapped. One
can show that distxr (o, ;) > distxr (o, 7(>;)), for every =;€
IT;? ., by analyzing the differences between >~; and 7(>;) in terms
of agreement on pairwise comparisons with ¢. By definition of the
Mallows culture M®°, we thus have P o0 (T(>3)) > P oo (=i
). Hence, we conclude that P 6.0 ({>=7: = £}) > P e.0 ({=i:
¢ >} x}), and thus P60 ({-i: @ =; £}) > 3, implying that
M is balanced for . O

4 The Unrestricted Poll Manipulation Problem

This section is devoted to the study of the unrestricted manipulation
problem where the polling institute can send any score in I. We first
give some results on the computational complexity of the problem
then we continue our work with a probabilistic approach of the prob-
lem to capture what can happen in practice.



We first prove that, even in the unrestricted case, the poll manipu-
lation problem is NP-complete. Our result answers an open question
from Baumeister et al. [3].

Theorem 4. The unrestricted manipulation problem is NP-complete.

Sketch of proof. Membership to NP is straightforward: given com-
municated scores, we can efficiently derive the possible unique devi-
ation of each voter and compute the winner in the deviating profile.

For hardness, we perform a reduction from a variant of EXACT
COVER BY 3-SETS (X3C) known to be NP-complete [17]: Given a
set X = {x1,22,...,23¢} and aset S = {51, 52,...,53q} of 3-
element subsets of X, where each element x; occurs in exactly three
subsets of S, we ask whether there exists an exact cover, i.e., a subset
S’ C S such that every element of X occurs in exactly one member
of S’. From an instance (X, S) of X3C, we construct an instance of
our unrestricted manipulation problem as follows.

For each element z;, for ¢ € [3q], we create a candidate y;, and
for each subset S; where j € [3¢], we create a candidate ¢;. We add
three candidates w, z, and ¢ where ¢ is our target candidate.

There are 12¢q + 7 voters: for each element xz;, for i € [3¢q|, we
create one voter Y;, for each subset .S;, for j € [3q], we create three
voters C7 where r € [3], and we finally add two voters T*, two
voters Z*, two voters W* for £ € [2], and one voter D.

Their preferences are defined below, where y(s’;) denotes the can-
didate y; associated with the r™ element of subset S i, and when a
subset of candidates is mentioned, the candidates are ranked accord-
ing to the increasing order of their indices.

Yii w>yi =z {yi oz - {ci}i -t fori € [3¢]
Ci: y(sj) =cj=z=w>{yirtwz = {cj}; =t forje [3q],r€[3]
T t=z=w>={y}i = {c;}; for ¢ € 2]
Z4 2= w s {yiti - {ei) -t for ¢ € [2]
W wsz={ytio = {cj}; =t for ¢ € [2]

D: w>t>z>{yi}i > {cj}s

Finally, the tie-breaking rule is as follows: w>t> 2>y > -« - >
Ysq > cCc1 B> D> c3q.

The winner of the election with the truthful ballot profile is can-
didate w. The details of the scores for this truthful ballot profile are
given in the second column of Table 1.

Table 1. Candidates’ scores in the complexity proof of Theorem 4

candidate initial score  announced score  score after manipulation
yi (i € [3q]) 3 3 3
r 3ifS; € S 3ifS; € S
¢ U € BaD 0 0 otherwise 0 otherwise
w 3q+3 2 2
t 2 2 3
z 2 3 2
winner w z t

We claim that there exists an exact cover in (X, S) iff we can force
the election of candidate ¢ in the constructed instance.

Suppose first that there exists a subset S’ C S such that every
element of X occurs in exactly one element of S’. Let us consider
manipulated communicated scores which differ from the sincere ones
by taking 3¢ 4 1 votes initially given to w to give one additional
vote to z and three votes to c; for each S; € S’. These scores are
summarized in the third column of Table 1. One can prove that these
communicated scores trigger deviations which lead to the final scores
presented in the fourth column of Table 1, where ¢ is the winner.

Suppose now that there exist communicated scores such that the
target candidate ¢ becomes the winner after deviations from the vot-
ers. One can show that the only possibility for communicated scores

to lead to the victory of ¢ is to announce candidate z the winner and,
as potential winners, the target candidate ¢ and exactly ¢ candidates
¢; which correspond to subsets .S; forming an exact cover of X. [J

Note that even though we have proved that the problem is NP-
complete, we know from Baumeister et al. [3] that it is FPT when
parameterized by the number of candidates m. Another way to go
beyond the NP-hardness result, which focuses on worst-case com-
plexity, is to analyze the actual possibility of poll manipulation using
a probabilistic approach which works even when m is large. We will
see that the poll manipulation problem is often easy to tackle in a
probabilistic point of view, following natural statistical cultures as
defined in Section 3. We will start by considering a balanced culture.

For a given target candidate =™ the polling institute wants to elect,
we say its poll manipulation is successful if after all strategic moves
from voters, the desired candidate x* is elected. Let us denote by
S the associated event of success, which corresponds to the yes-
instances of the unrestricted poll manipulation problem.

Let 2PW-H(z™, £) be the heuristic which announces a score with
exactly two potential winners x* and ¢, with x* the target candidate
and ¢ the announced winner. For realistic conditions, one point is
given to candidates with a positive score in the truthful ballot profile.
Assuming n > m+5 is sufficient to guarantee the possibility of mak-
ing any pair of candidates the only potential winners (this hypothe-
sis is rather weak since we focus on large elections in terms of vot-
ers). It then suffices to check whether the associated communicated
polling score leads to the victory of . This heuristic can be called
by a global heuristic, which tests it with different candidates ¢. Our
heuristics are computable in polynomial time and are inspired from
the heuristics of Wilczynski [33] and Baumeister et al. [3], where
the idea is to find a candidate ¢, which is a threatening winner, i.e.,
enough voters prefer ™ to £, while ™ is the only credible alternative
to 4, in order to incentivize voters to deviate to z*.

Let Sppw.u*, ¢y denote the event of success for heuristic 2PW-
H(z", £). Let X_, be the random variable which counts the number
of voters who prefer z* over £, i.e., X_, = |N”3*>'e|.

Similarly, let Y, ; be the random variable which counts the num-
ber of voters who prefer £ over ™ while their most preferred candi-
date is j, i.e., Yo, = |{i € N**" : top., = j}|. If our heuris-
tic 2PW-H(x ", £) indeed succeeds to announce exactly two potential
winners x* and ¢ with £ as a winner, then only voters who prefer x*
over ¢ and currently vote for another candidate, will deviate and they
will do so in favor of z*. Note that voters already having =™ as their
top choice would keep this vote because there is no other potential
winner. Therefore, in total, after deviations, ™ obtains a number of
votes which is equal to the numbers of voters who prefer 2™ over /.
It follows that * would win only if the number of voters preferring
™ over £ is greater than the number of voters who keep their vote
for another candidate, implying that for a given culture C'(n,II™),
Pc(Swpwhe+, ) =Pc(Vji€ M\ {z"}, Ye; < X—o).

Our first theorem provides a high lower bound on the probability
of success of the poll manipulation heuristic.

Theorem 5. For a balanced culture C(n,II™), there exists { €
Be(x™) such that the probability of success of the sub-heuristic
2PW-H(z", {), is as follows: Pc(Swpwma, ) = 1 — 2(m —

2)(6*27%%* = Ao g, 5% )2) where:

® Do i=Po(x” =i f),
o 7o =Po({l =i "} N {j =top-,}) forj # ¢
° T pT*,[-‘_TZ*,e,j
Qz* 0,5 = 2 )
o j* = argminjean (o=, Po(Ye,; < X_o).



In particular, the probability of success of the global heuristic satis-
fies the same lower bound.

Sketch of proof. For our target candidate =™ and a balanced culture
C(n,II™), let us consider a candidate { € Bc(z™). Since £ €
Bc(z™), we always have Yz o < X_¢ and thus Pc (Sopwne*. o) =
Pco(Vj € M\{z",£},Y:; < X_;). We will show a lower bound to
this latter quantity. Using Bonferroni’s inequality, we have: P¢ (V5 €
M\ A{z", 6}, Ye; < X—y) > Zje]\/l\{x*,é} Po(Ye; < X)) —
(m—=3) 2 (m—2) -minjean(z=,0y Pe(Ye,; < X_¢) — (m —3).
By considering j* := argminjean {o+,03 Po(Ye; < X_p), we
then have that Po(Vj € M\ {z*,¢},Ye; < X_¢) = (m —2) -
(Pe(Ye,j+ < X)) — 1)+ 1. Let us now treat the term P (Y, j= <
X_¢). We remark that X_, follows a binomial distribution of param-
eters n and pg+ ¢, and Yp, ;+ follows a binomial distribution of param-
eters n and 74+ ¢ j+, where py= ¢ and 7« ¢ ; are defined as py+ » =
Po(z® =i £)and rp= ¢ ; = Po({€ =i "} N{j = top-, }), forev-
ery j # . We introduce gy= ¢+ 1= 227203 4 Jower bound
our probability as follows: Pc(Ye+ < X_¢) = Pe({Ye,+ <
Qo5+ - n}({X-¢ > gu= 5+ - n}). We use again Bonferroni’s
inequality and an inclusion of events to get: P (Yo j+ < X—¢) >
Po({Yej < queje - n}) + Po({Xt > qur e - n}) — L
We then use Hoeffding’s inequality to find these lower bounds:
Pe(Yojo < quegge - n) > 1 — e 2@ mex059)” and
Po(X_—¢ > qurpj+-mn) = 1 — e~ 2 (Pax o= tur 05%)7 Putting
the last two inequalities together we get: P (Yo j+ < X—¢) >
1 — e 2n(Pax e =dax,0,5%)% _ o= 2n(qnx 0,5 ~Tar 0,5%)° Coming back
to the first work of the proof we have: Po(Sipwne. o) = 1 —
(m —2)(e” 2" (Pax 0= dax 0,57 )2 4 e 27(4am 0,5% ~Tax £5* )2). Finally,
since gg+ ¢, j+ is defined as the middle between py+ » and 7, ¢ j*,
we can simplify the inequality: Po(Sopwae*. o) = 1 — 2(m —
9)e=2n(Par 4= ta 05°)° 0

We can thus deduce the same lower bound for the probability of
existence of a successful unrestricted poll manipulation.

Corollary 6. For a balanced culture C(n,II™), the probability of
success of an unrestricted poll manipulation is as follows: Pc(S) >

1—2(m — 2)(e~ 2 Par e =t 25°)%),

Our next theorem considers the asymptotic case and shows the
convergence of the lower bound probability toward 1 when n be-
comes large. Since the number of voters is typically large in political
elections, this shows an important susceptibility to poll manipulation.

Theorem 7. For a balanced culture C(n,II™), there exists { €
Be(x™) such that the probability of success of the sub-heuristic
2PW-H(x*, £), and thus of the Global Heuristic, tends toward 1, i.e.,
limn o0 P (Sopwne, o) = 1 and thus lim, 0 P (S) = 1.

Proof. We use the lower bound from Theorem 5 to deduce the con-
vergence toward 1 of this probability. In fact it is enough to pass to
the limit on both sides in n the number of voters. The only tricky
point might be when p,+ ¢ = qu* ¢ j~. However, this situation can
happen only when the culture puts positive probability only on pref-
erence orders whose top can only be z* or j and in an equal manner,
which is not possible by natural assumption on the culture. O

Observe that the quantities pg+ ¢ and g+ ¢ ; from Theorem 5 are
constants and different, we thus have exponentially fast convergence
toward 1 for the probability of success of 2PW-H(x", £) w.r.t. the
number of voters. To give a quick intuition, observe that form = 5

and n = 50, we get a lower bound of 0.82 and for m = 5 and
n = 100, we already have a lower bound of 0.99 which is very fast!

Beyond this general result on balanced cultures, the goal would
be to capture realistic cultures regarding real elections [31]. From
Propositions 1-3, we can derive the following corollary which shows
that our general result covers very natural concrete cultures.

Corollary 8. For a culture C(n,II™), there exists { € Bc(z™)
such that the probability of success of 2PW-H(x™, £), and thus of the
Global Heuristic, tends toward 1, i.e., limy 00 P (Sopw.niz*, 1) =
1 and thus lim,, .o Pc(S) = 1, when:

e (' corresponds to the impartial culture, or

e Cis a single-peaked culture and x* is not an extreme candidate or
x* is extreme but Pc(>;| worst,, = z¥) < % which includes
Walsh’s and Conitzer’s cultures, or

e C corresponds to a Mallows culture M®7 where z* # worst,.

Our results show that even if the poll manipulation problem is
hard, it is very likely for the polling institute to efficiently and suc-
cessfully control the election, under natural preference distributions.
However, the hypothesis that allows to send any score is questionable
since the polling institute might be forced to meet some legal quality
standards or to maintain voter trust by sending a reasonable score.

5 The Restricted Poll Manipulation Problem

This section is devoted to the study of the manipulation problem in
its restricted version i.e., the polling institute is restricted in its ability
to lie about the scores and can only send a score vector from /.

The restricted poll manipulation problem is known to be NP-
hard [3]. However, one could hope to get a fixed-parameter tractable
algorithm w.r.t. the maximum allowed distance k to the truthful
scores. We show below that such an efficient algorithm is unlikely
to exist since we prove that the problem is W[1]-hard.

Theorem 9. The restricted manipulation problem is W[ 1 ]-hard.

Sketch of proof. From an instance (G = (V, E), k) of k-Clique,
known to be W[1]-complete [10], where n := |V/| and, w.l.o.g.,
2 < k < n — 1, we construct an instance of the restricted ma-
nipulation problem as follows.

For each vertex v; € V, we create a candidate v;, and for each
edge {vi,v;} € E, we create a candidate e;; (we suppose ¢ < j for
this notation). We add three other candidates w, t, and z.

Let K := (n—k)k. For each vertex v; € V, we create k voters Uy
for ¢ € [k], and K —1—6(v;) voters Df for £ € [K —1—&(v;)] (by
our assumption on k, this quantity cannot be negative), where 6(v;)
denotes the degree of vertex v; in G.

For each edge {vi,v;} € E, we create two voters F; and Fljj,
and K — 2 voters Ef; for £ € [K — 2]. Finally, we add K voters T*
for £ € [K] and K — 1 voters Z* for £ € [K — 1].

The preferences of the voters over the candidates are described
below, for each i € [n], and each {v,,vq} € E:

Uf: w>=vi = 2> {vj}jei > {erstirsy =1

FPyo vp = epg = 2= w = {vj}izp > {€rstirsy2ipay > t

Fog: wg = epg = 2 = w = {0 }izg = {ers sy 2pay
Di: vz = ws {vibjzi = {erstrsy =t

for £ € [k]

forl € [K —1—6(vi)]

Tt 2= w - (v} - {ers}rs) for £ € [K]
Erluf epq = 2= w = {vj}; = {erstrsiA{pa) =t for¢ € [K — 2]
Z% = w e (v} - {ershey - t for € € [K — 1]

Finally, the tie-breaking rule is as follows: z >t > - - - > w.

The winner of the election with the truthful ballot profile is can-
didate w. The details of the scores for this truthful ballot profile are
given in the second column of Table 2.



Table 2. Candidates’ scores in the complexity proof of Theorem 9

candidate initial score  announced score  score after manipulation
. Kifv; € S Kifv; € S
i (L € [n]) K-1 K — 1 otherwise K — 1 otherwise
B _ Kifvp,vg €S K ifvp,vg € S
eij {vi v} € B) K-2 K — 2 otherwise K — 2 otherwise
w kn K K
t K K-1 K
z K-1 K K-1
winner w z t

We claim that G admits a clique of size k iff we can force the
election of candidate ¢ by announcing scores which differ from the
truthful ones by at most k% + 1 vote changes.

Suppose first that there exists a subset of vertices S C V such
that S is a k-Clique of G, i.e., |S| = k and {v;,v;} € E for every
vi,v; € S. Consider manipulated communicated scores which differ
from the sincere ones by taking k? votes initially given to w in order
to give one additional vote to each v; € S (there are k such candi-
dates) and two additional votes to each e;; such that v;, v; € S (there
are w such candidates), and finally by taking one vote initially
given to ¢ in order to give it to z. In total, these scores differ from the
sincere ones by exactly k% 4+ 1 vote changes, they are summarized in
the third column of Table 2. One can prove that these communicated
scores trigger deviations which lead to the final scores presented in
the fourth column of Table 2, where ¢ is the winner.

Suppose now that there exist communicated scores such that can-
didate ¢ becomes the winner after all voters’ deviations. One can
show that the only possibility for communicated scores to lead to the
victory of the target candidate ¢ is to announce candidate z the winner
and, as potential winners, k candidates v;, as well as k(k — 1) /2 can-
didates e,q, such that for each potential winner v;, there are k — 1 po-
tential winners e;; (or e;;) corresponding to edges incident to v;. [

Nevertheless, we prove below that the restricted poll manipulation
problem can be efficiently solved if the parameter k of the maximum
distance to the truthful scores is a constant.

Proposition 10. The restricted manipulation problem is in XP w.r.t.
the maximum distance k to the truthful scores. More precisely, it can
be solved by an algorithm which runs in time ©(m2**1 . n),

Sketch of proof. We provide an upper bound of m?* to |I|. It is then
enough to visit every score vector of [ to check whether it leads to
the victory of the target candidate. O

However, the previous result cannot be used if k& is large and does
not tell whether there actually exists a successful manipulation. We
thus use a probabilistic approach to analyze the possibility of poll
manipulation. Let Sy denote the event of success for the restricted
poll manipulation where k denotes the maximum allowed distance
to the truthful scores. We first prove that when k is small compared
to /n, the restricted poll manipulation tends to be impossible.

Theorem 11. For any culture C(n,II™), if the maximum distance
k to the truthful scores is such that k = o(\/n) and the target can-
didate x* is not winning in the initial score, then the probability of
existence of a successful poll manipulation to elect x* tends toward
zero, i.e., lim,,_, o Pc(Sk) = 0.

Sketch of proof. We first identify the law of the truthful scores.

Observation 12. For a culture C(n,II™), the truthful scores s™
Sollow a multinomial law Multi(q,n) where ¢ = (q1,...,qm) and
q; :=Pc({Wpr(sT) = 5}), forevery j € M.

The truthful scores follow a multinomial law because there are n
voters’ preferences drawn independently at random with the same
law, and we have m possibilities for the most preferred candidate
of each voter, and these are the only necessary elements to compute
scores s7. Let c* be the truthful winner, i.e., ¢* := Wp(bT). In-
formally, a necessary condition for the existence of a successful ma-
nipulation with the two-candidate heuristic is that there is at least
one candidate that is sufficiently close to the winner. The pair of
candidates would then be this candidate and the current winner. Of
course, this is not necessarily sufficient, as the pair may not be the
right one. However, we will see that this necessary condition occurs
with probability 0, and that is enough for us to conclude. We then
write Sy C {Uz#*{\ScT* — 8T 4+ Lowp.| < k)

We will analyze the probability of the second event to get an up-
per bound on the probability of success of the restricted poll ma-
nipulation problem. By using Observation 12 and a central limit

theorem for multinomial law s”, we get: %(ST - ng) —
n n—-+oo

N(0;K), where K;; = ¢i0i; — qiqj, for every 1 < i,j <
m, with §;; = 1if ¢ = j and §;; = 0 otherwise. We de-
note N'(0; K) = (Mi,..., ) and remark that each A follows
a Gaussian law. Using the previous point we show that for any
z € M\ {z*}, we have: lim,,— oo Po(|sh — 87 + Losp.| <
k) = 0. It follows for the probability of the success event that
limp, 4 oo Po(Sk) < limnos oo Po(U,oe 58 — 57 + Loeps| <
k) <limpoyoo D0, 0 Po(|sh —sT+1eps| < k) = 0. We then
get: nBI-Ir—loo P¢(Sk) = 0, which concludes the proof. O

Then, we get immediately the following corollary if we include
the case where ™ might win in the initial poll, because it is always
possible to communicate scores that keep the same winner.

Corollary 13. For any culture C(n,1I™), if the maximum dis-
tance k to the truthful scores is such that k = o(\/n), then
limy,— 0o IPc(Sk) = IPc({Wp(ST) = JJ*})

We might note that, e.g., Pc({Wp(s") = 2*}) & - when con-
sidering the impartial culture.

We now focus on a case where poll manipulation can be success-
ful, and prove that we can even efficiently compute it, thanks to an
adaptation of the global heuristic where the sub-heuristic to call is
Restricted 2PW-H(z™, £) which, starting from sT tries to announce £
as the winner and =™ as the only other potential winner, while taking
into account the maximum allowed distance k. Let Spegopw-nz*. 0)
denote the event of success of this sub-heuristic.

Theorem 14. For a balanced culture C, if the maximum dis-
tance k to the truthful scores is such that n = o(k) where and
c* = Wp(bT), then there exists £ € Bco(x*) such that the prob-
ability of success of Restricted 2PW-H(x*, £) tends toward 1, i.e.,
limn— o0 P (Skesirzpwoniiz®, o)) = 1 and thus limp oo Po(Sk) =
1.

Proof. We can first observe that each score the polling institute may
send can be summarized by its set of potential winners and its win-
ner, since two announced scores with the same potential winners
and winner produce the same voters’ deviations. A type 7 (s) for
a score vector s is thus defined as a pair (PW,w) € 2™ x M
where w € PW, representing its potential winners and its win-
ner. The set of all possible score types is denoted by 7. We will
then show that: P ({U,c;, 7(s) = T}) = 1. Let ¢” be the truth-

ful winner, ie., ¢ = Wp (bT). Informally, a sufficient condition
for the existence of a strategy of each type is that all candidates



are sufficiently close to the winner. More precisely, we would like
them all to be closer than % so that the cost of making poten-
tial winners any pair of candidates never exceeds k. We then get:
(N Is5 = 8T 4 Lowa] < £)) € {Uoer, T(s) = T,
We again use the same technique adding and subtracting n - g+ and
n - q. and a central limit theorem on the truthful scores sT following
a multinomial law (Observation 12). However, we have this time a
remaining term /n(gex — g2 ) that is bounded by assumption (n =
o(k)). We then get: ngrfoc Pe(|sh —sT +1cp2| < £) = 1. Since

a countable intersection of events of probability 1 is of probability 1,
we have: lirf Po(N, e {|st — s +1copz| < £3}) = 1. Then,
n——+0oo

we have: Po(U,¢;, T(s) = T) = 1. Using the fact that a success-
ful strategy exists in the unrestricted case and since all strategies are
accessible, we get: limyn— o0 P (Skesr2pwonz*, ) = 1. Therefore,
we have also: limy, ;o0 Pc(Sk) = 1. O

The case k = «-n with @ €]0, 1] is included in Theorem 14. This
has a clear interpretation: if the polling institute is allowed to lie by a
fraction o on scores then we will fall in the manipulation regime for
a sufficiently large number of voters.

Like for the unrestricted problem, the general result of Theorem 14
holds for the concrete cultures mentioned in Section 3.

Corollary 15. For a culture C and n = o(k) and ¢ =
Wp (bT), there exists £ € Be(z*) such that the probabil-
ity of success of Restricted 2PW-H(x", () tends toward I, i.e.,
limy, s 00 P (Skesirapwrz*, ¢y) = 1 and thus limy, oo Pc(Sk) =
1, when:

e (' corresponds to the impartial culture, or

e C isasingle-peaked culture and x™ is not an extreme candidate or
x* is extreme but Pc (i| worsty., = z*) < %, which includes
Walsh’s and Conitzer’s cultures, or

o C corresponds to a Mallows culture M®° where x* # worst,.

6 Toward a Generalization of Strategic Behavior

Until now, we only considered strategic moves from pivotal voters.
However, one can argue that voters might want to deviate when they
are close enough to be pivotal. Such a strategic behavior can be cap-
tured by considering pivotal thresholds p; € N for each voter ¢, as
done by Wilczynski [33] in an idea close to local-dominance [25].
This slightly modifies the definition of potential winners: A candidate
y is a general potential winner for voter ¢ w.r.t. score s if ¢ believes
that adding p; votes to y will make candidate y the new winner, i.e.,
S;\jp(s—i) — 5"+ Ly, (s—iysy < Pi- We denote PW; P the set
of general potential winners for ¢ w.r.t. score s. The definition of best
response naturally follows by considering general potential winners.
Our initial setting corresponds to the case where p; = 1.

Let us first analyze the impact of pivotal thresholds on strate-
gic voting. For this purpose, we suppose that the polling institute
is sincere and sends truthful scores s = s”, and that all thresh-
olds are equal and denoted by p, i.e., p; = p, for every voter i.
Let us define the expected proportion of strategic voters Psy W.r.t.
culture C(n,II™), n, m, and p. Let UP denote the event where
the top candidate of voter 7 is not a general potential winner for 4,
ie, U’ = {top-, ¢ PW;P}, and D? the event where voter ¢
could favor a potential winner other than the current winner, that
she prefers to it, i.e., DY = {Jw € M\ {tops-,} : w >;
Wp(s) and w € PW;P}. By definition, the proportion of strate-
gic voters counts the voters for who the two events are true, i.e.,
Psv(C,n,m,p) = Ec[; 31, Lyrapr].

The following proposition provides several insights on the propor-
tion of strategic voters at the limits, by showing that the variations of
the dependent events U; and D; are opposed with respect to p.

Proposition 16. /. U = Ec[2 3" | 1y»]is decreasing w.rt. p.
2. D =Ec[: Y0, 1p0] is increasing w.rt. p.

3. Psy(C,n,m,p) < min(U, D).

4. pHI-{I—loo Psv(C,n,m,p) = 0and Psv(C,n,m,0) = 0.

5.

lirf Psv(C,n,m,p) = 0 when p is fixed.
n—r oo

Although the previous proposition helps to better understand the
proportion of strategic voters at the limits, it is still difficult to exactly
determine the behavior for other values of p, in particular when Psyv
is maximum, because of the dependency between U and D.

Let us now analyze the poll manipulation problems. Let S (resp.,
S£) denote the associated event of success for the unrestricted (resp.,
restricted) problem with generalized strategic behavior.

Proposition 17. For a balanced culture C(n,II™), p > 0 and p =
o(n), we have IPC(SG) > Pc(S) and IPC(SE) > Pc(Sk).

It follows from Proposition 17 that Theorems 5 and 7, for suc-
cessful unrestricted poll manipulation, also hold under a general-
ized strategic behavior with the given weak hypotheses. Similarly,
the convergence result toward 1 for the probability of a successful
restricted poll manipulation (Theorem 14) and the generalization of
Theorem 11 can also be extended to a generalized strategic behavior.

7 Conclusion

In the context of political elections where voters are assumed to
be strategic, we have studied the poll manipulation problem: Can
a polling institute lie about candidates’ scores it communicates to
voters in order to influence the outcome of the election? Two vari-
ants are investigated: an unrestricted one where any scores can be
sent, and a restricted one, more realistic, where the polling insti-
tute cannot announce scores too far from the reality. We show that
both problems are computationally hard and answer an open question
from Baumeister et al. [3]. However, we go beyond this worst-case
analysis by using probabilistic tools to balance computational hard-
ness. Under a broad condition on cultures, satisfied by many concrete
preference distributions, we prove a lower bound on the probabil-
ity of success of an easily computable heuristic for the unrestricted
problem. This enables us to obtain a rapid convergence toward 1 of
the manipulation probability, meaning that large elections are highly
manipulable when the polling institute can freely manipulate with-
out altering the trust of voters. When it may not be the case, i.e., in
a restricted context, our asymptotic results show that manipulabil-
ity strongly relies on whether the allowed distance to truthful scores
depends on the election size. Manipulation tends to fail when this
distance is negligible w.r.t. the number of voters. However, when the
distance is significant, e.g., is a given proportion of the election size,
which appears as a very natural assumption, efficient and success-
ful manipulation tends to be always possible, showing that political
elections are highly susceptible to poll manipulation in practice.

Future work should be devoted to studying the generalization of
these results in different directions. Considering other voting rules or
other types of information communicated in the poll would be natu-
ral. Another avenue of work could be to examine different strategic
voting behaviors, such as local dominance [23]. Finally, a challeng-
ing future direction would be to adapt our analysis to dependent cul-
tures such as the P6lya-Eggenberger urn [31].
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Technical Appendix

A Missing Proofs

Proposition 2. Ifx € M \ {e7,e5 }, then every single-peaked cul-
ture C(n, I12) is balanced for x. If x € {e7, €3 }, then every single-
peaked culture C(n,1IT") which also satisfies Pc ({>; |lworst., =
z}) < %, is balanced for x.

Proof. Let > be an axis on M. Observe first that, by definition,
every preference order >; which is single-peaked w.r.t. >, must
rank last an extreme candidate of >. Therefore, for every single-
peaked culture C'(n,IIT), we must have Po({>; | worsty, =

e7} U {=; | worsty, = e3}) = 1. Moreover, since Pc({>;
| worst,, = e} U {~;i | worst., = e3}) < Pc({>:
| worsty, = e7}) + Pco({>: | worst-, = e5}), this implies

that there exists an extreme candidate e}, for £ € [2], such that
Po({>: | worsts, = e;}) > L. It follows that, for every can-
didate z € M \ {e7,e3}, Pc(z =i e]) > %, proving the first
part of the statement. Consider now a candidate e;” for £ € [2].
Assuming that Pc({>; |worst., = e;}) < 3, implies that
Po({>~i |worst., = e3_,}) > % and thus Pc(e] = e5_,) > 1,
proving the second part.

Proposition 3. Any Mallows culture M®° is balanced for every
candidate x € M \ {worst, }.

Proof. Consider any candidate © € M \ {worst,} and the candi-
date £ := worst,. Let I}, denote the set of all preferences orders
where y is ranked before z,i.e., II;} , := {>;€ II"™ : y >; z}. Con-
sider the bijection 7 : IIyL , — II7% ,, where for every preference
order ;€ IIjL ., we construct the preference order 7(>;) € I},
which is the same as >; except that the positions of x and ¢ are
swapped. We will show that P (4,0 (7(>i)) > P 6,0 (>3) for ev-
ery >;€ IIyL . For this purpose, we will show that dxr (0, >=;) >
dxr(o,7(>;)), by analyzing the differences between >=; and 7(=;)
in terms of agreement on pairwise comparisons with o.

By definition, for any arbitrary preference order >, we have that
dxr(o,>=7) = dir (o] (a.ey, [l pgen) + {y € M £
g+ 1y € M\ {0} : o =1 yandyou}| + |{y € M\ {¢} :
y >; xand zoy}|, where [-]]y denotes the restriction of the
preference order =, on Y C M. Observe that, by construction,
for any »;€ IIjL ., >; and 7(>;) agree on all pairwise compar-
isons within M \ {¢, z}. Therefore, we have drr([0]|m\ 12,3, [~4
Imvgz,y) = drr([o]jan a0, [T(=)ljan (2,6y)- Moreover, by
construction, for all candidates y such that ¢ 7(>;) y it implies
that ¢ >; vy, for all candidates y € M \ {¢} such that z >; y
it implies that = 7(>;) y, and for all candidates y € M \ {¢}
such that y 7(>;) « it implies that y >; x. It follows that we
have dKT(O', >i) — dKT(O',T(>»;)) = |{y e M : ¥l —; Yy T(>~;
)l — [y € M\ {} : yowandz 7(=5) y = o} + |y €
M\ {¢} : zoyandz 7(>;) y >; x}|. By construction, it holds
that [{y € M : € >; y 7(>4) £} = r+,(z) — rv,(£). More-
over, [{y € M\ {¢{} : yozandz 7(>;) y > z}| + |{y €
MN\A{L} : zoyandx 7(>:) y =i x}| = r,(x) — 7, (£) — 1,
which implies that —(rv, (z) — rv,({) — 1) < —|{y € M \ {¢} :
yoxandx 7(>;) y =i x} + {y € M\ {£} : zoyandz 7(>;
)y =i z}| < rv,(x) — re,(¢) — 1. Therefore, in total, we have
1< d}(T(O'7 >‘i) — dKT(0'7T(>--;)) < 2(T>i (CC) — T, (Z)) — 1, and
thus dxr (o, >:;) > drxr(o,7(>;)). By definition of the Mallows
culture M?-?, we thus have P .o (T(>:)) > P 40,0 (=4). Hence,
we conclude that P 6.0 ({=7: =i £}) > P o0 ({Fi: £ =5 x}),

and thus P 6,0 ({=7: @ =} €}) > 1, implying that M*“ is bal-
anced for x. O

Theorem 4. The unrestricted manipulation problem is NP-complete.

Proof. Membership to NP is straightforward: given communicated
scores, we can efficiently derive the possible unique deviation of each
voter and compute the winner in the deviating profile.

For hardness, we perform a reduction from a variant of EXACT
COVER BY 3-SETS (X3C) known to be NP-complete [15]: Given
aset X = {x1,29,...,23.} and aset S = {S1,52,...,S34} of
3-element subsets of X, where each element x; occurs in exactly
three subsets of S, we ask whether there exists an exact cover, i.e.,.,
a subset S’ C S such that every element of X occurs in exactly
one member of S’. From an instance (X, S) of X3C, we construct
an instance of our unrestricted manipulation problem as follows. For
each element x;, for ¢ € [3q], we create a candidate y;, and for each
subset S; where j € [3¢], we create a candidate ¢;. We add three
candidates w, z, and ¢ where ¢ is our target candidate.

There are 12¢ + 7 voters: for each element z;, for i € [3¢], we
create one voter Y;, for each subset .S;, for j € [3¢|, we create three
voters C] where r € [3], and we finally add two voters T, two
voters Z ! , two voters W for £ € [2], and one voter D.

Their preferences are defined below, where (s’ ) denotes the can-
didate y; associated with the r™ element of subset S;, and when a
subset of candidates is mentioned, the candidates are ranked accord-
ing to the increasing order of their indices.

Yii w>yi =2 {yotios = {cj}i >~ t for i € [3q]
Ci: y(sy) =cj=z=w>{yirtwr = {cj}; =t forj e [3q],r € [3]
T tsz=w> {y}i = {cj}y for ¢ € [2]
Z% 2w {yiti - {cj}; -t for ¢ € [2]
W w2z {yiti = {ei}s =t for ¢ € [2]

D: w>t=z>{yi}i = {cj};

Finally, the tie-breaking rule is as follows: w >t >z D>y > - - - >
Ysqg > cCc1 B> - D> c3q.

The winner of the election with the truthful ballot profile is can-
didate w. The details of the scores for this truthful ballot profile are
given in the second column of Table 3.

Table 3. Candidates’ scores in the complexity proof of Theorem 4

candidate initial score  announced score  score after manipulation
yi (i € [3q)) 3 3 3
. 3iij€S, 3iijES/
¢ U € [3a) 0 0 otherwise 0 otherwise
w 3q+3 2 2
t 2 2 3
z 2 3 2
winner w z t

We claim that there exists an exact cover in (X, S) iff we can force
the election of candidate ¢ in the constructed instance.

= : Suppose first that there exists a subset S’ C S such that
every element of X occurs in exactly one subset of S’. Since | X| =
3q and all elements of .S are subsets of X of size 3, we have |S’| = q.
Let us consider manipulated communicated scores which differ from
the sincere ones by taking 3¢ + 1 votes initially given to w to give
one additional vote to z and three votes to c¢; for each S; € S'.
These scores are summarized in the third column of Table 3. By the
tie-breaking rule, candidate z is the announced winner.
It follows from these communicated scores that all candidates are
potential winners except the candidates c; such that S; ¢ S’. There-
fore, each voter Y; will deviate from ballot w to ballot y;, for ¢ € [3¢],



all voters C] such that S; € S’ will deviate from ballot y(s) to bal-
lot ¢;, and voter D will deviate from ballot w to ballot ¢. Since S !
is an exact cover, each additional vote for y; by voter Y; will be bal-
anced by the removal of one vote for y; by the voter C7, such that
S; € 8" and y(s}) = yi, who deviates from y; to ¢;. Therefore, in
total, these deviations will remove 3g 4 1 votes from w, give three
votes to g candidates c; and add one vote to ¢, leading to the victory
of ¢, as summarized in the fourth column of Table 3.

<= : Suppose now that there exist communicated scores such
that the target candidate ¢t becomes the winner after deviations from
the voters. The global idea of the proof is that the only possibility for
communicated scores to lead to the victory of the target candidate ¢
is to announce candidate z the winner and, as potential winners, the
target candidate ¢ and exactly g candidates c¢; which correspond to

subsets S; forming an exact cover of X.

We will first show by disjunction case that the announced winner
can only be candidate z.

Observe that ¢ cannot win if it does not gain any additional vote.
Indeed, for ¢ to win with at most two votes, w cannot get more than
one vote, and all the other candidates more than two votes, which
sums to at most 12q + 3 votes for other candidates, whereas there
would be 12q 4 5 voters who do not vote for ¢, a contradiction. It
follows that ¢ cannot be announced as the winner, and must be a
potential winner. However, by construction of the preferences, the
only voter who can deviate to a ballot ¢ is voter D. Therefore, in the
deviating profile, ¢ can get at most three votes.

If w is announced the winner, then the 3q voters Y; will keep their
vote for w, therefore ¢t can never win with its maximum score of
three, a contradiction.

Let us now analyze the case where the announced winner is a can-
didate y; or c;, by considering the candidates that can be announced
potential winners:

e If candidate z is a potential winner, then at least voters 7 and W*
will deviate to it, which leads to at least four votes for z, whereas
t can get at most three votes. Therefore, z cannot be a potential
winner.

e Now, if candidate w is a potential winner, then at least voters T*
and Z° will deviate to it, leading to at least four votes for w,
whereas ¢ can get at most three votes. Therefore, w cannot be a
potential winner.

e Now, if a candidate 7,/ is a potential winner, for i’ < i or when
c; is the winner, then at least voters T Z e, and WE, for £ € [2],
will deviate to the candidate y;,/, that we call ¥, which is declared
potential winner with the smallest index i, by construction of their
preferences. Therefore, y* would get at least six votes, whereas ¢
can get at most three votes. Thus, such y,; cannot be a potential
winner.

e Now, if a candidate y;s or ¢,/ is a potential winner, for ¢’ > ¢ and
y; winner, then voter Y; will keep her vote for w as well as voters
W* for £ € [2], which leads to at least three votes for w whereas
w is preferred to ¢ in the tie-breaking rule. Therefore, such y;, or
c¢;j» cannot be a potential winner.

e Now, if a candidate ¢,/ is a potential winner, for 5/ < j and ¢;
winner, then at least voters T¢, Z¢, and W, for £ € [2], will devi-
ate to the candidate c;, that we call c*, which is declared potential
winner with the smallest index j’, by construction of their prefer-
ences. Therefore, ¢* would get at least six votes, whereas ¢ can get
at most three votes. Thus, such c;/ cannot be a potential winner.

e Now, finally, if a candidate ¢, is a potential winner, for j° > j
and c¢; winner, then all voters Y; will keep their vote for w, which

leads to at least 3¢ votes for w, whereas ¢ can get at most three

votes. Therefore, such c¢; cannot be a potential winner.

e [t follows that ¢ is the only potential winner, and thus all voters Y;
keep their vote for w, which leads to at least 3¢ votes for w, and
thus ¢ cannot win, a contradiction.

Consequently, the announced winner must be candidate z. Since
t can get at most three votes, and w initially gets 3¢ + 3 votes, at
least 3¢ + 1 votes must be removed from w (w is preferred to ¢
in the tie-breaking). Voters W* will not deviate from w if z is the
announced winner, therefore all voters Y; and D must deviate from
w. It follows that each candidate y; must be a potential winner as
well as ¢. However, for each candidate y;, we need that at least one
of the three voters C7 such that y(s}) = y; deviates from her initial
vote to y;, otherwise y; would get four votes and ¢ could not win. For
such a voter Cj to deviate, the only solution is to make candidate c;
a potential winner. By construction, it follows that we need to find
a subset of candidates c; (to make them potential winners) such that
the associated subsets .S entirely cover the elements in X. Thus, we
need to make at least ¢ candidates c; potential winners.

Let us now analyze the compatible scores that can be communi-
cated. If z is the announced winner with at most two votes, then by
the tie-breaking rule, candidates w and ¢ can get at most one vote,
and all the other candidates at most two votes, which sums to at most
12q + 2 votes for other candidates, whereas there would be 12¢g + 5
voters who do not vote for z, a contradiction. If z is the announced
winner with at least four votes, then to be potential winners, ¢ should
get at least three votes, all candidates y; at least four votes, and at
least g candidates c; at least four votes, which sums to at least 16¢+-3
votes for other candidates, whereas there are 12q + 7 voters in total,
a contradiction. Consequently, z must be announced the winner with
exactly three votes, and thus ¢ must be announced with two votes,
all candidates y; with three votes, and at least ¢ candidates c; with
three votes. The only possibility to announce such scores is to take
3q + 1 votes from w and to distribute them to give three votes to ¢
candidates c; and one vote to candidate z. The only possible margin
then is given by the two remaining votes for w, however they are not
sufficient to make another candidate c; a potential winner. Hence,
there are exactly ¢ candidates c¢; which are potential winners such
that the associated subsets of S; entirely cover X, which means that
the union of such subsets is an exact cover. O

Theorem 5. For a balanced culture C(n,II™), there exists { €

Be(x*) such that the probability of success of the sub-heuristic

2PW-H(z™, £), is as follows: Pc(Sapwuer, o) = 1 — 2(m —

2)(672"(131*%7%*%-7'*)2) where:

® Dyxyp 1= Pc(w* i Z),

o rox i :=Pc({l =i z"}N{j =tops-,}) forj #¢

° . - pm*,l+rw*,é,j
qz* 6,5 2

o j¥ = argminjeM\{z*’e} IPC()/Z,]' < Xfe)‘

In particular, the probability of success of the global heuristic satis-

fies the same lower bound.

>

Proof. For our target candidate 2™ and a balanced culture C'(n, II"™),
let us consider a candidate £ € Bc(z*). Since £ € Be(z™), £ will
never be better and we can simplify the equality: P o (Sapwn@*. ) =
Pc(Vj € M\ {z*,£},Ye; < X_g). Our goal is to show a lower
bound to Pc(Vj € M\ {z*,£},Ye ; < X_,). For this purpose, the
following lemma will be useful.

Lemma 18 (Bonferroni [5]). P(N;_, 4:) > > .

i P(A) = (n —
1).



We deduce from Bonferroni’s inequality (Lemma 18) that
IPC(Vj eEM \ {x*,@},YM < X*Z) > ZjeM\{z*,l} IPC(YEJ
X)) = (m=2—=1) 23500 o 0y Mijenn (o= 0y P (Yo
X_g) - (m - 3) 2 (m — 2) . minjeM\{z*yl} ]PC(}/Z,j < X_g) —
(m — 3). By considering j* := argmin;jean {o+,03 Po(Ye;
X_¢), we then have that Po(Vj € M\ {a", £}, Ye; < X_y)
(m —2)- (Pc(Ye,j+ < X_¢) — 1) + 1. Let us now treat the term
Po(Ye,j+ < X—¢). We remark that X_, follows a binomial distri-
bution of parameters n and p,+ ¢ and Y ;+ follows a binomial distri-
bution of parameters n and 7.+ ¢ j=, where py+ ¢ and 7.+ ¢ ; are de-
fined as pyx ¢ = Po(a™ > £) and rp= g j = Po({£ =i 2"} N{j =

Po* 0t Tox 0 5%

N IN

AVAW/AN

tops, }), for every j # £. We introduce g+ ¢ j* := 5
to lower bound our probability as follows: Pc (Y j+ < X—¢) >
Po({Yejx < qu o5+ - n}({X=¢ > quxe,j+ - n}). We use again
Bonferroni’s inequality (Lemma 18) to get: Pc(Ye j+ < X_y) >
Po({Ye < qare5+ -n}) + Po({X e > gar 05+ - n}) — 1. We
then use the following lemma to treat each term of this inequality.

Lemma 19 (Hoeffding [20]). Let X be some independent real ran-

dom variables, and (a)ke[n) and (b)) ke[n) two real sequences such

that for every k € [n], we have ay, < by, and P(ar, < Xi < bg) = 1.
—2¢2

Then, for everyt > 0, P(S,—E(Sn) > t) < eZh=1k=9)% Jpere
Sn = k—1 Xk

Applying the inequality from Lemma 19 on Bernoulli variables
Xk with ar, = 0 and b, = 1, forevery k € [n],and t = x - /n, we
get: P(S, — E(Sn) = z-y/n) < e™2"  where S, = > Xk
Now, by taking * = +/n - (gu*,j* — Tz=4,+) and applying
Lemma 19 to our sum of Bernoulli variables Y ;« (i.e., a binomial
of parameters n and rg» ¢ =), we get: Po(Ye j+ < qu* 0,5+ - 1)
1=Po(Yejr 2 qeeye-n) = 1= Po(Ye —rexpje - n
Qo+ M — Tax o+ - n) = 1 — Po(Yo v — raxpjx -0
V(Vn(gas 0,0 —Tax 05+))) 2 1—e 2" e5* ~max.25*)” Now,
we want to apply a similar treatment to variables X_,. Let us de-
note X', = n — X_, the random variable following a binomial
distribution of parameters 7 and 1 — p,= ¢. We have: Pc(X_, >
Q> 0,5% * n) = Pe(n — Xig > Qx* 0,5 ¢ n) = ]PC(XL@ <
n=qeregeon) = 1-Po(X, — (1 —pere) - n > (1—
Gev05%) = (L=parg) ) =1 =Po(XL,— (1= par ) n >
V(e e = Gerg)) > 1 — e 2Paemten05)” Putting
the last two inequalities together we get: Po (Ve < X_¢) >
1 — e 2nax e=0av 05)* _ g=2n(dax 3% —"a*.0,5)° Coming back
to the first work of the proof we have: Pc(Sipwue. o) = 1 —
(m— 2)(6*2"(1’1'*»2*%*»2&* )? NI CENNE *"w*,f,j*>2), Finally,
since gg+,¢,j+ 1s defined as the middle between py+ ¢ and 75+ ¢ j+,
we can simplify the inequality: Pc(Swpwne*. o) = 1 — 2(m —
2)6—2"(%*,/3—%*.@,1*)2_ O

A\

Theorem 9. The restricted manipulation problem is W[ 1 ]-hard.

Proof. From an instance (G = (V, E), k) of k-Clique where n :=
|V|,m := |E|and, w.l.o.g.,2 < k < n—1, we construct an instance
of our restricted poll manipulation problem as follows.

For each vertex v; € V, we create a candidate v;, and for each
edge {v;,v;} € E, we create a candidate e;; (we suppose ¢ < j for
this notation). We add three other candidates w, t, and z. In total, we
thus have n 4+ m + 3 candidates.

Let K := (n—k)k. For each vertex v; € V, we create k voters Uy
for £ € [k],and K —1—6(v;) voters DY for £ € [K —1—6(v;)] (by

our assumption on k, this quantity cannot be negative), where §(v;)
denotes the degree of vertex v; in G.

For each edge {vi,v;} € E, we create two voters FZJ and Ffj,
and K — 2 voters Ef; for £ € [K — 2]. Finally, we add K voters T
for £ € [K] and K — 1 voters Z* for £ € [K — 1].

The preferences of the voters over the candidates are described
below, for each ¢ € [n], and each {v,, v} € E:

Uf: w2 > {vj}je > {erstirsy =1

Fggt vp = epg = 2= w = {vi bizp > {ernsHrsytfpar ~ ¢

Fpg: wg = epg =z = w = {0 }izg = {ers sy 2(pay

Di: vz ws {vi}hjzi = {erstirsy =t

for ¢ € [k]

forl e [K —1—6(vi)]

T t=z=w={v}; = {erstrs for ¢ € [K]
By epg = 2= w = {v;}; = {ensHrs)£pa) = t forl € [K — 2]
Z' 2w {u} = {erstrsy >~ t for £ € [K — 1]

Finally, the tie-breaking rule is as follows: z >t > - - - > w.

The winner of the election with the truthful ballot profile is can-
didate w. The details of the scores for this truthful ballot profile are
given in the second column of Table 4.

Table 4. Candidates’ scores in the complexity proof of Theorem 9

candidate initial score  announced score  score after manipulation
. Kifv;, €8 Kifv, € S
v (L € [n]) K-1 K — 1 otherwise K — 1 otherwise
) Kifvp,vg €S Kifvp,vg €8
eij ({vi, v} € B) K=2 K — 2 otherwise K — 2 otherwise
w kn K K
t K K-1 K
z K-1 K K-1
winner w z t

We claim that G admits a clique of size k iff we can force the
election of candidate ¢ by announcing scores which differ from the
truthful ones by at most &% + 1 vote changes.

= : Suppose first that there exists a subset of vertices S C V'
such that S is a k-Clique of G, i.e., |S| = k and {v;,v;} € E for
every v;,v; € S. Let us consider manipulated communicated scores
which differ from the sincere ones by taking k2 votes initially given
to w in order to give one additional vote to each v; € S (there are
k such candidates) and two additional votes to each e;; such that
vi,v; € S (there are @ such candidates), and finally by taking
one vote initially given to ¢ in order to give it to z. In total, the com-
municated scores differ from the sincere ones by exactly k2 + 1 vote
changes.

In the manipulated scores, z is winning with K votes thanks to
the tie-breaking, while only the k£ candidates v; corresponding to the
vertices of the clique are announced as potential winners with K
votes, as well as the k(k — 1)/2 candidates corresponding to the
edges of the clique, and candidate w. These manipulated scores are
summarized in the third column of Table 4.

It follows from these communicated scores that all voters Uf such
that v; € S deviate from w to v;. By these deviations, candidate w
loses k2 votes, and thus obtains in total K votes, while each candi-
date v; € S gains k votes. However, by definition of the clique, for
each v; € S, there are exactly k — 1 voters F}; (or F};) who will
deviate from v; to the potential winner e;; (or e;;) corresponding to
an edge incident to v;. Therefore, each v; € S also loses k — 1 votes,
and thus obtains in total K votes. Note that, by these deviations, each
candidate e;; such that v;, v; € S gains two additional votes and thus
obtains in total K votes. No other deviation is possible because all
remaining voters prefer z to all potential winners that are not at top
of their preferences. The scores after all deviations are summarized
in the fourth column of Table 4. The maximum score is K, which

is obtained by w, k candidates v;, and @ candidates e;;, and



t. Candidate ¢ is favored by the tie-breaking among these candidates
and thus wins the election.

<= : Suppose now that there exist communicated scores such
that the target candidate ¢t becomes the winner after deviations from
the voters. The global idea of the proof is that the only possibility for
communicated scores to lead to the victory of the target candidate ¢

is to announce candidate z the winner and, as potential winners, k

candidates v;, as well as k(k — 1)/2 candidates e,q, such that for

each potential winner v;, there are kK — 1 potential winners e;; (or

e;i) corresponding to edges incident to v;.

We will first prove that z must be announced as the winner. Ob-
serve that no voter can deviate to ¢ because every voter, except all
voters T who already vote for ¢, ranks it last. It follows that we
need that at least k2 voters U, who currently vote for w, deviate to
another candidate, and thus w cannot be announced as the winner.

Let us analyze the case where the announced winner would be a
candidate v;, epq or candidate ¢, by considering the candidates that
can be announced potential winners:

e If candidate z or w is a potential winner, then at least all voters
D¢ and all voters E*, (except voters Ef;q if epq is announced as
the winner) would deviate to z if z is a potential winner or to w
otherwise, and thus z or w would gain too many votes compared
to t and ¢ would never win. Therefore, none of them is a potential
winner.

e Now, if a candidate v;s is a potential winner, for i’ < i or when
epq or t is the winner, then all voters D¥ and all voters E, (except
voters Eﬁq if epq is announced as the winner) would deviate to
such candidate v;/, that we call v*, which is declared potential
winner with the smallest index i’. Thus, such v* would gain too
many votes compared to ¢ and ¢ would never win. Therefore, such
v, cannot be a potential winner.

e Now, if a candidate v;/ or e, is a potential winner, for i’ > 4 and
v; winner, then all voters U/, for i # i’, would keep their vote
for w and thus w would have too many votes compared to ¢ and ¢
would never win. Therefore, such v;, or e,.; cannot be a potential
winner.

e Now, if a candidate e, is a potential winner, for {r, s} < {p, ¢}
when e, winner or for ¢ winner, then at least all voters D and all
voters EY, (except voters Ef;q if epq is announced as the winner)
would deviate to such candidate e,, that we call e*, which is de-
clared potential winner with the smallest index {r, s}. Therefore,
e* would get too many votes compared to ¢ and ¢ would never win.
Thus, such e, cannot be a potential winner.

e Now, finally, if a candidate e, is a potential winner, for {r, s} >
{p, q} and e,, winner, then all voters U}, would keep their vote
for w and thus w would have too many votes compared to ¢ and ¢
would never win. Therefore, such e,s cannot be a potential winner.

o [t follows that ¢ is the only potential winner, and thus all voters
Uf keep their vote for w. Thus, w has too many votes compared
to t and ¢ cannot win, a contradiction.

Hence the communicated scores must announce z as the winner.
Since z is ranked among the first two most preferred candidates

by all voters Df, TZ, Ef;q and Z 157 none of these voters will deviate.

Recall that we need at least k2 voters U{ (for i € [n] and £ € [k])

who deviate to another candidate, and the only candidate other than

their top candidate that voters Uy prefer to z is v;, for all £ € [k].

Therefore, we need to announce at least k£ candidates v; as potential

winners. In such a way, each chosen candidate v; gains k additional

votes, whereas it initially had K — 1 votes from voters Df, who
cannot deviate, and from voters Ffj (or F;Z) for each edge {v;,v;} €

E. Since t will have at most K votes, we need at least kK — 1 voters

FZJ (or F;Z) who deviate from ballot v;. The only other candidate that
such voters prefer to z is candidate e;; (or e;;). Therefore, for each
chosen v; potential winner, we also need to announce as potential
winners at least £ — 1 candidates e;; (or e;;) which correspond to
edges incident to v;.

Recall that we can only announce scores which differ from the
truthful ones by at most k2 + 1 vote changes. If we announce z the
winner with at most & — 1 votes, then we need to remove at least k2 +
1 votes for w and one vote for ¢, therefore we have already exceeded
our budget. If we announce z the winner with at least X + 1 votes,
then we need to add two votes to at least k candidates v;, three votes
to at least @ candidates e;; and one vote to z, therefore we have
already exceeded our budget. It follows that we need to announce z
the winner with exactly K votes. In this case, we need to add one
vote to z, one vote to at least k candidates v; and two votes to at
least @ candidates e;;. Therefore, to meet our budget, we need
to declare exactly k£ candidates v; and exactly @ candidates e;;
as potential winners, in such a way that for potential winner v; there
exist k — 1 potential winners e;; corresponding to incident edges.
Hence, the chosen candidates v; correspond to a k-clique in G. [

Proposition 10. The restricted manipulation problem is in XP w.r.t.
the maximum distance k to the truthful scores. More precisely, it can
be solved by an algorithm which runs in time ©(m2**1 . n),

Proof. We give an upper bound to |I|. We denote that any move of
voters is characterized by the origin and the destination candidate.
Since our distance counts the number of swaps, one swap is defined
by choosing two candidates, we then get (7) = ™2~ and |I,| <
W‘ We start from s and iterate the upper bound argument and
we get: |I]| < (W)k < m?*, It is then enough to visit every
score of I, and add the winner determination in ©(m - n). At the
end, we get O(m2**1 . n). O

Theorem 11. For any culture C(n,II™), if the maximum distance
k to the truthful scores is such that k = o(\/n) and the target can-
didate x* is not winning in the initial score, then the probability of
existence of a successful poll manipulation to elect x* tends toward
zero, i.e., limy,_,o Pc(Sk) = 0.

Proof. Let us start by identifying the probability law of the truthful
scores.

Observation 20. For a culture C(n,II™), the truthful scores s
Jollow a multinomial law Multi(p,n) where ¢ = (q1,...,qm) and
;= Pc({Wp(s") = j}), for every j € M.

The truthful scores follow a multinomial law because there are n
voters’ preferences drawn independently at random with the same
law, and we have m possibilities for the most preferred candidate
of each voter, and these are the only necessary elements to compute
scores s* . We will use the following result on multinomial laws.

Lemma 21 (Severini [30]). If (Nn)n>o is a multinomial law in R™

with parameters n and ¢ = (q1, - . . , ¢m) and N'(0; K) a multivari-

ate normal distribution then %(Nn —ng) — N(0; K), where
n n—+oo

Kij = qibij — qiq;, for every 1 <1, j < m, with6;; = 1ifi = j

and 6; 5 = 0 otherwise.

Let ¢ be the truthful winner, i.e., ¢c* := Wp(bT). Informally, a
necessary condition for the existence of a successful manipulation
with the two-candidate heuristic is that there is at least one candi-
date that is sufficiently close to the winner. The pair of candidates



would then be this candidate and the current winner. Of course,
this is not necessarily sufficient, as the pair may not be the right
one. However, we will see that this necessary condition occurs with
probability 0, and that’s enough for us to conclude. We then write
St C{U. s {155 — 87+ Loz < K}

We will analyze the probability of the second event to get an
upper bound on the probability of success of the restricted poll
manipulation problem. By using Observation 20 and Lemma 21

1 (. T

with N,, = s7, we get: 7=(s" — ng) el N(0; K), where

Ki; = @di; — qiqj, for every 1 < 4,57 < m. We denote
N(0;K) = (M,...,Nn) and remark that each N follows a
Gaussian law. For any z € M\ {z*}, we have lim,, . y o P (|55 —
53 + lc*[>z| < k) = limn—>+oo IPC(|ﬁ521 — NQc*x — ﬁsz +

lexps

ng. + + n(ger — qz)| < %) Combining this equal-

ity with the previous convergence result using the test function
o(s") = l{‘ LT g ow— -l sT4ng,+ 2 B2 4 (qn —q.)| <k}
T Ser dc NohE qz NGO Gex —92)1= 7
and lim \if = 0 by assumption, we deduce that
n—+oco VT

limp— 400 ]PC(|ﬁSZ‘* — NGex — %SZ +ng: + lc\;rELz +n(ger —
g:)] < 22)) = Po(INer — N + 2225 4 nfge- —g:)| < 0) =0.
Therefore, lim,,—, yoo Po(Js% — 87 + Losp.| < k) = 0.

It follows for the probability of the success event that
limp, 4 o0 Po(Sk) < limnopoo Po(U, e [ser — 52 + Levsa| <
k) <Timpoyo0 Y. Po(|sds —sT 4+ 1evpz| < k) = 0. We then
get: ngrfoo Pc(Sk) = 0, which concludes the proof. O

Proposition 16. /. U = Ec[; 327, 1y»] is decreasing w.r:t. p.
2. D =Ec¢[: Y1 | 1p»] is increasing w.rt. p.

3. Psv(C,n,m,p) < rflin(U, D).

4. pEIJTrlOO Psv(Cyn,m,p) = 0and Psy(C,n,m,0) = 0.

5. lirf Psv (Cy,n,m,p) = 0 when p is fixed.
n— oo

Proof.

1-2. The statements follow from the inclusions Uip/ C U? and D? C
Df/, for each p’ > p.

3. Using the inclusions UN D C U and U N D C D, we show that:
Psv(C,n,m,p) < U and Psv (C,n,m,p) < D.

4. If p is maximum, then all candidates are potential winners and
thus each voter keeps her truthful vote, while when p = 0 there
are no potential winners to deviate to.

5. Using Lemma 21, we know that the winner ¢* and any other can-
didate z will be spread out at least of order \/n asymptotically.
We then deduce that there are no potential winners other than the
winner in that case, since p is fixed. O

Proposition 17. For a balanced culture C(n,II"™), p > 0 and p =
o(n), we have Pc(S€) > Pc(S) and Pc(SS) = Pc(Sk).

Proof. In an idea similar to the proof of Theorem 14, for each score
of a given type in the initial setting, we can always choose a score
of the same type which works for the generalized strategic behav-
ior, since they would trigger the same deviations. Indeed, even if the
polling institute is not sending the same score, it might construct a
score with the same potential winners and the same winner since p is
negligible against n. O

B Heuristics and Figures

Algorithm 1: Global Heuristic

Input: (N, M, >, >), Target candidate ™
1 foreach ¢ € M \ {z"} do
L (is_successful, s) + 2PW-H(z*, {);

(5]

if is_success ful then return (T'rue, s) ;

4 return (False, None)

Algorithm 2: 2PW-H(z", £)

Input: (N, M, >, t>), Target candidate =™, Candidate £
1 s < m-vector with zeros; R < n;
foreach j € M \ {z*, ¢} do
3 L if 3¢ € N such that top,, = jthens; < 1; R+ R— 1,

»

Sov < | B]ise + [B]; 5"« argminjenn (o0} S5

if 2" > £ and R is even then sz+ <— sy+ — 1; 85+ < s+ + 1;
if 2* > ¢ and R is odd then s; <+ s, + 1;

if > z* and R is odd then s~ < s; + 1;

if Wp(b°) = 2* then return (True, s);

else return (False, None);

e ® N A »n s

Algorithm 3: Restricted 2PW-H(z™, /)

Input: (N, M, >, >, k), Target candidate =*, Candidate £
1s<sT;R+0;
2 while 3c € M \ {€} s.t. sc > s¢ — Letart + Losc—ar and
R < kdo
3 y < argming« ¢{Sz*, 80 — 1}; 8y < sy + 1;
L Se+S.—1; R+ R+1;
while s+ < sy — 1yxp¢and R < k do
j* + arg max;epm\{¢} 545
if s, > max;enm\{¢} Sj + 2 then j* < ¢;
Sgr <= Sgr +1; 85+ <= s+ —1; R+~ R+ 1;
if Wp(b°) = z* then return (T'rue, s);
9 else return (False, None);
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Figure 1. Proportion of strategic voters depending on the pivotal threshold
p in an election with 100 voters and 4 candidates under impartial culture.



