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Titre: Approches probabilistes pour l’analyse de la variabilité des résultats électoraux
Mots clés: Choix social computationnel, Théorie du vote, Probabilités, Préférences, Votestratégique.
Résumé: La théorie du choix social s’intéresseau problème de l’agrégation des préférences in-dividuelles en une décision collective. Les rè-gles de vote constituent l’un des principaux out-ils utilisés, mais la plupart d’entre elles peuventposer des problèmes, et des résultats fonda-teurs dans ce domaine montrent qu’il n’existepas de règle de vote parfaite. Plutôt que dechercher à identifier une règle de vote idéale,cette thèse adopte une perspective différenteen se concentrant sur les résultats électorauxeux-mêmes.A l’aide d’une approche probabiliste, elleétudie plus précisément comment ces résultatspeuvent varier selon différents facteurs, four-nissant ainsi des éléments concrets et simplessur leurs implications en pratique.Une première source de variabilité résidedans le choix de la règle de vote. Puisqu’il enexiste plusieurs, une question naturelle est desavoir si elles ont tendance à produire le mêmevainqueur. Pour y répondre, nous étudionsla probabilité d’accord entre différentes règles.Les travaux précédents montrent que cetteprobabilité est faible sous des distributions uni-formes de préférences. Cependant, nous nousconcentrons sur des distributions plus struc-turées, couramment utilisées dans les étudesempiriques, et montrons que l’accord est enréalité nettement plus élevé dans de tels con-textes.Une deuxième source de variabilité est liéeà la possibilité de comportements stratégiques.Étant donné que les règles de vote peuvent êtremanipulées par des électeurs qui ne voteraientpas sincèrement, nous analysons comment levote stratégique affecte la diversité des résul-tats dans les élections avec la règle de pluralité.

En particulier, nous examinons s’il est possiblede prédire le vainqueur, à la fois d’un point devue computationnel et qualitatif. Par exemple,nous étudions si le comportement stratégiqueaugmente la probabilité que le vainqueur deCondorcet, celui qui bat tous les autres candi-dats en duel, soit élu.
Une troisième source de variabilité vient dela possibilité de manipulation de l’informationpar un acteur externe. L’existence de com-portements stratégiques pose la questiondu pouvoir donné à ceux qui diffusentl’information. Nous nous demandons notam-ment si un institut de sondage peut influencerle résultat d’une élection avec la règle de lapluralité en manipulant les informations qu’ildiffuse. Nous abordons cette question sous unangle à la fois computationnel et probabiliste,en étudiant si une telle manipulation est réalis-able en pratique, et à quelle fréquence elle estréussie.
Enfin, une dernière source de variabilitéétudiée provient de l’incertitude. En pratique,les informations recueillies par les sondagessont souvent incomplètes ou incertaines, ce quipose la question de leur impact sur les déci-sions stratégiques des électeurs. Pour traiterce problème, nous introduisons un nouveaumodèle conçu pour prendre en compte ce typed’incertitude, donnant ainsi des outils pourétudier la variabilité qui en découle.
Chacune de ces sources de variabilité desrésultats électoraux est donc analysée à traversune approche probabiliste, qui permet d’avoirun sens des proportions sur les résultats etd’apporter des éclairages concrets sur ce quipeut effectivement se produire en pratique.



Title: Probabilistic Approaches to the Analysis of Voting Outcomes’ Variability
Keywords: Computational social choice, Voting theory, Probability, Preferences, Strategic voting.
Abstract: Social choice theory deals with theproblem of aggregating individual preferencesinto a collective decision. Voting rules are oneof the tools for this purpose, but most of themcome with issues, and foundational results inthe field of social choice show that no perfectvoting rule exists. Rather than striving to iden-tify an ideal rule, this thesis adopts a differentperspective by focusing on election outcomesthemselves.Specifically, it investigates through a prob-abilistic approach, how these outcomes mayvary depending on several factors, thus provid-ing concrete and simple insights into their prac-tical implications.A first source of variability is the choice ofvoting rule. Since different voting rules exist, anatural question is whether they tend to pro-duce the same outcome. To address this, westudy the probability of agreement among var-ious rules. Previous results in the literatureshow that this probability is low under uni-formdistributions of preferences. However, wefocus on more structured distributions, com-monly used in empirical studies, and show thatagreement is in fact significantly higher in suchsettings.A second source of variability is the possibil-ity of strategic behavior. Since voting rules aresusceptible tomanipulation by insincere voters,we investigate how strategic voting impacts thediversity of outcomes in plurality elections. Inparticular, we examine whether it is possible to

predict the winner, both from a computationalpoint of view and from a qualitative perspec-tive. For instance, whether strategic behaviorincreases the likelihood that the Condorcet win-ner, that is the candidatewho beats every othercandidate in pairwise comparisons, is elected.
A third source of variability is the poten-tial manipulation of information by an externalagent. The existence of strategic voting raisesthe question of how much power is given tothose who disseminate information. We askwhether a polling institute can influence theoutcome of plurality elections by manipulatingthe information it broadcasts. We approachthis question from both a computational anda probabilistic perspective, examining whethersuch manipulation is computationally feasibleand how frequently it succeeds.
A final source of variability consideredcomes from uncertainty. In practice, the in-formation collected through polls is often nei-ther complete nor certain, raising the questionof how this affects voters’ strategic decisions.To address this, we introduce a new model de-signed to handle such challenges, thereby pro-viding tools to capture the variability arisingfrom uncertainty.
Thus, each source of variability in electionoutcomes is studied using a probabilistic ap-proach, which helps gain a sense of proportionregarding the results and provides concrete in-sights into what can happen in practice.
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1 - Introduction

Nineteen years ago, in a small French town, a group of schoolchildren was
asked to elect their representatives for the local youth city council. Without
hesitation, one of them raised his hand to run. Back home, he started reflect-
ing seriously on how to win the election, given that four candidates were com-
peting and each had to outline a political agenda. Should he propose installing
football goals in the schoolyard to sway the electorate? His campaign worked
and he was elected. Following two intense terms, he retired from a promising
political career . . . at the age of thirteen. Years later, he studied mathematics,
computer science, and economics, fields that, perhaps surprisingly, intersect
around a common theme: the study of collective decisions. Then, hewrote his
first research paper on poll manipulation in political elections. Coincidence?
Maybe not. Social choice theory lies at the heart of this intersection. It draws
on tools from all three fields to formally study how individual preferences can
be combined into a collective decision.

Social choice theory is interested in the problem of aggregating individual
preferences. One well-known type of aggregation is voting rules, which are
both a central topic in social choice theory and the focus of this work. Imag-
ine an election with two candidates, A and B, and nine voters, where five
voters prefer A over B, and the remaining four prefer B over A. In this case,
it is natural to elect candidate A as the winner, as she receives the majority
of the votes. Nevertheless, let us make this example slightly more complex
by introducing a third candidate, C. Suppose that two voters who prefer A
to B and two voters who prefer B to A now rank C first, while all remaining
voters rankC in third position. The situation has already become less straight-
forward. Indeed, if we think of the classical plurality rule, in which each voter
votes for her favorite candidate, and the candidate with the most votes wins,
then candidate C would be elected. However, a majority of voters ranked C

last. This example highlights a key limitation of the plurality rule: it ignores
voters’ full preference rankings and relies only on their first choices.

Coming back to our initial example with two candidates, A and B, one
might also expect that the addition of a less popular third candidate,C , should
not affect the relative ranking between the original two candidates. For in-
stance, if two voters who preferred A to B now rank C first, while all other
voters rank C last, then C is an irrelevant candidate. Nevertheless, under the
plurality rule, candidate B ends up winning the election, receiving a higher
plurality score than A. We say that plurality is violating the property called
independence of irrelevant alternatives.

Imagine another election with three candidates, A, B, and C , and five
voters. Two voters prefer candidate A over candidate B, and candidate B
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over candidate C. Two other voters prefer candidate B over A, and A over
C. Finally, one voter prefers candidate C over B, and B over A. In a plural-
ity election, where each voter gives her vote to her most preferred candidate,
both A and B receive two votes, while C receives only one. Ties are broken
lexicographically; since A comes first in the tie-breaking order, A is declared
the winner. However, the voter who prefers C the most has an incentive to
change her vote and support candidateB instead because her first candidate
C has no chance. By doing so, B would receive three votes and win the elec-
tion, which is a more favorable outcome for that voter who ranksA last. Such
a situation, where a voter can misreport her true preferences in order to ob-
tain a more favorable outcome, is known as strategic voting. In this case, the
voter is said to be pivotal. A voting rule that allows such behavior is said to be
not strategyproof. Properties such as independence of irrelevant alternatives,
strategyproofness, and others are referred to as axioms.

We also distinguish between two types of solutions to our problem of ag-
gregating preferences: a social welfare function, which outputs a complete
ranking of the candidates, and a voting rule, which selects one or more win-
ners. For instance, the plurality rule assigns scores to candidates based on
how many voters rank them first. These scores can be used to generate a
complete ranking of the candidates, which is an example of a social welfare
function. However, if the goal is simply to select one ormorewinners, one can
apply a voting rule that picks the candidates ranked highest in the ordering.
These examples show that the simplest rule, plurality, is far from perfect, as
it violates the property of independence of irrelevant alternatives and allows
for strategic voting. One might consider designing a more complex rule that
would resolve these issues.

Nevertheless, social choice researchers have brought even additional bad
news: for more than three candidates, the search of a social welfare function
satisfying very reasonable axioms is hopeless. Indeed, combining the axiom
of independence of irrelevant alternativeswith weak Pareto condition, which es-
sentially states that if every voter prefersA toB, then the social ranking must
place A above B, leads to the conclusion that only a dictatorship can satisfy
both axioms, this is Arrow’s impossibility theorem [Arrow, 1950]. Dictatorship
is defined as a social welfare function that always outputs the ranking of a
single voter chosen in advance, and is of course undesirable. In addition, an-
other fundamental impossibility result is the Gibbard and Satterthwaite the-
orem [Gibbard, 1973; Satterthwaite, 1975], which essentially states that, with
more than three candidates, strategic voting is unavoidable.

These two results are central in social choice theory and make the prob-
lem of selecting a voting procedure far more complex than one might initially
expect. From a broader perspective, a closely related question to that of se-
lecting a voting rule is to understand how much the outcome can vary when
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the voting rule is changed. Indeed, the relevance of selecting a particular vot-
ing rule arises only if the outcome frequently depends on the chosen rule. In
other words, having a voting rule that satisfies desirable properties may be
of little importance if the outcome remains the same regardless of the rule
used, since the final decision would not be affected. There are two natural
approaches to addressing the question of agreement between voting rules,
each grounded in the nature of the data used. First, one can analyze real-
world data from various elections, such as American elections [Regenwetter
et al., 2007], Romanian elections [Roescu, 2014], or the parliamentary elections
in the Austrian federal state of Styria [Darmann et al., 2019]. Being grounded
on actual data, it gives you answers to real cases but is susceptible to provid-
ing insights that apply only to the specific election under study. In contrast, a
second approach relies on synthetic data and is complementary to the first, as
it addresses the question of agreement between voting ruleswith greater gen-
erality and flexibility regarding election size. A drawback of this approach is its
potential lack of empirical relevance. This approach began with the seminal
work of Gehrlein and Fishburn [1980], which was limited to three candidates
and a small set of voting rules. It was later extended to a broader range of
voting rules [Merlin et al., 2000; Lepelley et al., 2000b; Gehrlein, 2003]. These
papers, among others, have been surveyed in the work of Gehrlein and Lep-
elley [2010]. Thus, this topic is important to the field of social choice, as the
choice of different voting rules can be viewed as a key source of variability in
election outcomes.

The Gibbard and Satterthwaite impossibility theorem, previously dis-
cussed, also opens up a whole research question: if strategic behavior is un-
avoidable with more than three candidates, then we might be interested in
modeling such strategic behavior. To address this question, a key issue lies
in the information available to voters, as strategic decisions depend on what
voters know about the current state of the election. Two main approaches
have been proposed in the literature. The first, due to Myerson and Weber
[1993], adopts a Bayesian game-theoretic framework in which all voters simul-
taneously assess the situation and decide whether to change their vote based
on their utilities and probabilistic beliefs about other voters. In contrast, the
second approach, introduced by Meir et al. [2010], models strategic behav-
ior as an iterative process: at each step, a single voter updates her vote if
she is pivotal, based on the current state of the election. In this framework,
the information available evolves dynamically as voters react sequentially. Of
course, both models are simplifications. The first relies on strong assump-
tions regarding utilities, probabilistic models, and the one shot nature of the
decision-making process. The second assumes sequential information up-
dates at each round, in a way similar to polls, which may be unrealistic in
contexts where polls are sparse, and it assumes arbitrary strategic behavior
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from voters. Nevertheless, these two models have met consensus in the liter-
ature, as highlighted in the survey by Meir [2018].

Therefore, these models raise many questions, both about the interpre-
tation of their results and about their underlying modeling framework. First,
we may want to assess whether these strategic voting models often predict
different winners, either through empirical [Thompson et al., 2013] or compu-
tational analysis [Rabinovich et al., 2015]. In other words, we aim to determine
whether the variability in outcomes induced by strategic voting is substantial.
Indeed, it would allow us to study the impact of strategic voting on the out-
come of the election. To address this question, one may also turn to a more
theoretical framework that studies the problem throughprobabilistic average-
case analyses [Brânzei et al., 2013; Kavner and Xia, 2024]. Another relevant as-
pect is whether, despite the inevitability of strategic behavior, the final winner
obtained after strategic voting may still satisfy other desirable properties. To
this purpose, we present one other solution concept introduced by de Car-
itat marquis de Condorcet [1785], namely the Condorcet winner. Imagine an
election with three candidates, A, B, and C , and seven voters. Three voters
prefer candidate A overB, and B over C. Two voters preferB to C , and C to
A. Finally, two voters prefer C to B, and B to A. Then, candidate B defeats
both A and C in pairwise comparisons, even though A is the plurality winner.
Somehow, the underlying intuition behind this solution concept is that if we
elect A, then after the election, a majority of the voters would have preferred
B instead. In precise terms, a Condorcet winner is a candidate which beats
every other candidate in pairwise comparisons. Such a candidate does not al-
ways exist because pairwise comparisons can cycle, referred to as a Condorcet
cycle. However, when it does, one might expect it to be elected, but this is not
always the case. For example, if we use the previous example and replace
one voter who preferred C to B, and B to A with a voter who prefers C to A,
and A to B, we obtain a Condorcet cycle: A is preferred to B, B to C , and C

to A. A voting rule that always elects the Condorcet winner when it exists is
called Condorcet-consistent. It is then natural to ask whether strategic voting
increases or decreases the probability of electing such a winner [Grandi et al.,
2013]. This question addresses the qualitative impact of strategic behavior,
since being a Condorcet winner is a qualitative property that can apply to any
candidate.

Moreover, as previously mentioned, the winner of strategic voting is
strongly connected with the information available to voters, and may influ-
ence strategic voters depending on the nature of the information [Endriss
et al., 2016; Reijngoud and Endriss, 2012]. This raises important concerns
about the power held by those who disseminate such information. One may
question whether polling institutes can influence the outcome of an elec-
tion [Wilczynski, 2019; Baumeister et al., 2020]. Therefore, one may question
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the extent to which an external agent can influence the variability of election
outcomes. For instance, one might ask whether a polling institute can af-
fect the result of an election by manipulating the information it disseminates,
thereby making the outcome itself susceptible to external influence.

Another concern regarding the information available to voters is its in-
trinsic uncertainty. Indeed, constructing polls necessarily involves sampling
a subset of the electorate, as it is not feasible to query every voter. This
sampling process introduces uncertainty into the information provided [Meir,
2017]. This observation raises the question of how voters make decisions
under uncertainty, whether they follow a pessimistic criterion [Gilboa and
Schmeidler, 1989], a combination of optimism and pessimism [Hurwicz, 1951],
or some other behavior. This naturally leads to the question of how such
decision-making behaviors may impact outcomes’ variability. In addition, one
may also raise the issue of uncertain voters [Kreiss and Augustin, 2020], as it is
not always clear whether a voter is certain of her preference or able to provide
a complete ranking over the candidates. Note that the majority of existing
models rely on the strong assumption that each voter provides a complete
and certain order over the candidates. Therefore, considering more general
assumptions may lead to greater variability in election outcomes.

The goal of this thesis is to study the various sources of variability in elec-
tion outcomes. This variability can stem from multiple sources: it may arise
from the voting rule itself, from the susceptibility of all rules to strategic be-
haviors, from manipulation through polling information, or from incomplete
or uncertain preference profiles. These problems share a common perspec-
tive: the aim is not to propose a novel “perfect” procedure for aggregating
preferences, nor to characterize the normative properties of voting systems,
but rather to focus on existing voting rules and to analyze their effects in con-
crete terms, by analyzing who is elected, and how this outcome may vary.
Therefore, a relevant way to tackle this problem is through a probabilistic ap-
proach, as our concern is to measure the variability of the outcome, which is,
by nature, a quantitative question. This approach contrasts with much of the
literature in computational social choice, where the focus is often on address-
ing problems from an axiomatic or computational perspective [Brandt et al.,
2016]. Nevertheless, we note that some literature on our questions does ex-
ist, and a non-exhaustive list of works using probabilistic approaches to our
questions has already been mentioned, including the survey by Gehrlein and
Lepelley [2010] on agreement between voting rules, the studies by Brânzei
et al. [2013] or Kavner and Xia [2024] on iterative voting, and the work of Kreiss
and Augustin [2020] on uncertain voters. When a theoretical issue arises in an
election context, it is natural to ask whether it occurs frequently or only in rare
cases, thereby allowing us to assess the magnitude and practical relevance of
the problem. For instance, when considering the possibility of poll manipula-
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tion in plurality elections, we may not only ask whether such manipulation is
possible or computationally easy to perform, but also whether it occurs fre-
quently in practice, as this provides concrete insights of the phenomenon.

In Chapter 2, we give a presentation of the preliminary concepts, nota-
tions, and tools necessary for understanding this thesis. Indeed, we present
the main concepts needed for the thesis, including the modeling of voters’
preferences, an overview of voting rules, the basic strategic votingmodel, and
the probabilistic tools for preference modeling.

In Chapter 3, we study how different voting rules may produce the same
outcome. Although no voting rule is perfect from an axiomatic perspective,
we show that the probability of agreement between them can be very high
in certain contexts. In particular, we demonstrate that when the distribution
of voters’ preferences in the population satisfies some natural structural as-
sumptions, this probability can exceed the levels previously computed in the
literature.

In Chapter 4, we analyze how strategic voting can impact the outcomes of
plurality elections. We adapt the concepts of possible and necessary winners
in this context. A candidate is a possible winner if there exists a sequence
of strategic moves that leads to her victory, and a necessary winner if every
possible sequence of strategic moves results in her winning. We study these
notions from both computational and probabilistic perspectives. We then as-
sess the quality of the winner under strategic voting by examining whether
strategic behavior increases or decreases the probability that the elected can-
didate is a Condorcet winner.

In Chapter 5, we explore the susceptibility of political elections to poll ma-
nipulation through strategic voting. Indeed, the possibility of strategic voting
using poll information opens the question of the power granted to polling in-
stitutes. We will tackle that problem from a computational and probabilistic
perspectives. Indeed, we are interested in two questions which are the ability
to compute a manipulation and whether or not this strategy is often success-
ful.

In Chapter 6, we extend the model of uncertainty in iterative voting intro-
duced by Meir [2017] to introduce quantitative aspects. We use tools from
imprecise probability to bridge the strategic voting models of Myerson and
Weber [1993] and Meir et al. [2010], while also extending the framework to
model new situations. In particular, we relax the assumption that voters’ pref-
erences are complete and certain.
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2 - Preliminaries and Notations

This chapter is dedicated to the introduction of all basic notations that will
be used in the whole thesis. Let us describe step by step all the objects that
will help us describe an election. We obviously start with voters and candi-
dates. Let N = {1, . . . , n} be a set of voters andM = {x1, . . . , xm} a set ofmcandidates. For notational convenience, we will use [k] instead of {1, . . . , k}
for any positive integer k, making therefore N = [n].

2.1 . Preferences

Wewant tomodel voters’ preferences regarding the candidates. Twomain
approaches are commonly used in the literature to represent agents’ prefer-
ences: the ordinal approach, which models preferences as rankings over al-
ternatives, and the cardinal approach, which assigns utility values to capture
preference intensity. Following the former, we adopt the ordinal approach
and represent preferences using linear orders. Furthermore, we will assume
a linear order until Chapter 6, which stipulates that each voter can strictly com-
pare any two candidates and rank all of them. Precisely, each voter i ∈ N has
preferences over candidates represented by a linear order ≻i over M . We
may drop the i when the linear order is not associated to a specific voter. Let
top(≻i) be the preferred candidate of i, i.e.,

top(≻i) ⪰i x, for every x ∈M.

We define analogously the worst preferred candidate of i, i.e.,
x ⪰i worst(≻i), for every x ∈M.

Let Nx := {i ∈ N : top(≻i) = x} be the set of voters who prefer x to any
other candidate, and, for a given subset of votersA ⊆ N , let us define the set
of voters who prefer x to y.

Ax≻y := {i ∈ A : x ≻i y}

However, one can argue that the hypothesis of complete linear order is
not always verified since voters could have incomplete or uncertain prefer-
ences. Indeed, a voter may not be able to rank a candidate or may not be
sure of her preferences. We will try to relax this hypothesis in Chapter 6.

Nevertheless, we assume it from Chapter 3 to Chapter 5 and summarize
all preferences in one object called preference profile of the election that we
denote P = (≻i)i∈N .Here is a simple preference profile that illustrates the definition.
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Example 1. Consider an election with four voters and three candidates, with vot-
ers’ preferences as follows:

x1 ≻1 x2 ≻1 x3
x1 ≻2 x3 ≻2 x2
x2 ≻3 x3 ≻3 x1
x3 ≻4 x2 ≻4 x1

In this example, voter 1 prefers x1 to x2 and x2 to x3.

We denote the set of all possible preference orders for m candidates by
Πm. Then, for a given preference order ≻∈ Πm, we define the rank of candi-
date x in ≻, denoted by r≻(x), as

r≻(x) := |{y ∈M : y ≻ x}|+ 1.

We also present a distance between two preferences called Kendall tau dis-
tance, called distKT , to evaluate the similarity between two preference orders
≻ and ≻′ in Πm, by counting the number of pairwise comparisons on which
the two orders disagree, i.e., distKT (≻,≻′) = |{(x, y) ∈ M2 : x ≻ y and y ≻
x}|.

Continuing with the casem = 3 as in Example 1, we can explicitly enumer-
ate all possible preference orders.
Example 2. Consider an election with three candidates, we can enumerate all
possible voters’ preferences as follows:

x1 ≻ x2 ≻ x3
x1 ≻ x3 ≻ x2
x2 ≻ x1 ≻ x3
x2 ≻ x3 ≻ x1
x3 ≻ x1 ≻ x2
x3 ≻ x2 ≻ x1

In general, we can easily deduce that |Πm| = m! since each preference
order corresponds to a permutation of the set of candidatesM of sizem.

2.2 . A Special Case of Preferences: Single-Peaked Preferences

In many situations, certain preferences may be excluded for various rea-
sons, as they correspond to scenarios that are unlikely or even impossible.
For example, consider an individual ranking temperatures ranging from 10◦C
to 25◦C in 5-degree increments. A preference such as 25◦C ≻ 20◦C ≻ 15◦C ≻
10◦C indicates a consistent liking for higher temperatures. However, a pref-
erence like 25◦C ≻ 10◦C ≻ 15◦C ≻ 20◦C appears incoherent, as it vio-
lates the natural ordering of temperature. In such cases, it is reasonable to
restrict attention to single-peaked preferences, where each individual has a
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most-preferred option (a “peak”) and preferences decrease monotonically as
one moves away from this peak in either direction along a meaningful axis
(e.g., temperature from low to high). The same reasoning applies in political
settings, where preferences often align along a one-dimensional left-right ide-
ological spectrum.

Building on the idea we roughly discussed, we now consider a common
preference restriction, namely single-peakedness [Black, 1948].
Definition 1 (Single-peakedness [Black, 1948]). A preference profileP ∈ (Πm)n

is single-peaked if there exists an axis > on M such that, for every voter i ∈ N ,
and each triple of candidates x > y > z, we have y ≻i x or y ≻i z.

All along the thesis, we consider, w.l.o.g., an axis > on M such that x1 >

· · · > xm. Let Πm
> be the set of all possible single-peaked preference orders

with respect to an axis > onM .
Continuing with the case m = 3, we can enumerate all possible single-

peaked preferences orders with respect to an axis.
Example 3. Consider an electionwith three candidates and an axisx1 > x2 > x3 ,
we can enumerate all possible single-peaked voters’ preferences with respect to
this axis as follows:

x1 ≻ x2 ≻ x3
x2 ≻ x1 ≻ x3
x2 ≻ x3 ≻ x1
x3 ≻ x2 ≻ x1

In general, we can easily deduce that |Πm
> | = 2m−1, independently of the

axis >.
Following the previous example, we give in Figure 2.1 an illustration of how

single-peaked preferences can be represented with respect to a specific axis.
We observe the presence of a single peak for each preference , which visually
illustrates the concept of being single-peaked.
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Candidates

Preference rank

3rd

2nd

1st

x1 x2 x3

▲

▲

▲

x2 ≻ x1 ≻ x3

x3 ≻ x2 ≻ x1

x1 ≻ x2 ≻ x3

x2 ≻ x3 ≻ x1

Figure 2.1: All possible single-peaked preference orders for three candidateswith respect to the axis x1 > x2 > x3

Since we have modeled voters’ preferences, we are now ready to address
one of the main concern of voting theory, namely the choice of a voting rule
to aggregate voters’ opinions.

2.3 . Voting Rules

A voting rule F : (Πm)n → 2M \ {∅} selects a non-empty subset of candi-
dates for each preference profileP ∈ (Πm)n. For the rest of this thesis, most
of the time, we reduce our attention to voting rules that choose a unique win-
ner. When we have ties, the solution is to use a tie-breaking rule. We arbitrar-
ily choose the lexicographic tie-breaking, denoted by ▷, which is an order over
the candidates.

We first present a class of voting rules, namely scoring rules.
Definition 2 (Scoring rules). A scoring rule F is associated with a score function
α = (α1, . . . , αm) and selects the candidates maximizing this score, i.e., F(P) ∈
argmaxx∈M

∑
i∈N αr≻i (x)

for every preference profile P ∈ (Πm)n.

Wedenote byWF the set ofwinners under a given voting ruleF . This set is
often reduced to a singleton, as we primarily focus on rules that elect a single
winner. We then make a distinction between the ballot and the underlying
preference. Let bi ∈ 2M \ {∅} denote the ballot submitted by voter i and b ∈
Mn denote the ballot profile, i.e., b := (b1, . . . , bn). One of the simplest scoring
rules we could think of is plurality, namely the rule where each voter votes
for their preferred candidate, and the candidate with the highest number of
votes is elected, we denote the winner set byWP .
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Formally, the winner under Plurality of the ballot profile b is
WP (b) ∈ argmax

x∈M
|{i ∈ N : bi = x}|

For the particular case of plurality rule we add other notations: the ballot
profile b from which bi is excluded denoted by b−i and b⊤ the truthful ballot
profile where all voters submit their sincere preferences, i.e., b⊤i = top(≻i) forevery voter i ∈ N .

Let us build an example to illustrate the plurality rule.
Example 4. Consider an election with seven voters and three candidates, with
voters’ preferences as follows:

x1 ≻1 x2 ≻1 x3
x1 ≻2 x2 ≻2 x3
x1 ≻3 x3 ≻3 x2
x2 ≻4 x3 ≻4 x1
x2 ≻5 x3 ≻5 x1
x3 ≻6 x2 ≻6 x1
x3 ≻7 x2 ≻7 x1

Therefore, in this example, x1 receives 3 points, x2 receives 2 points, and x3
also receives 2 points. Hence, x1 is elected under the plurality rule.

We then consider a specific type of scoring rules, namely positional scoring
rule (PSR). A PSR F is defined by a score vector α = (α1, . . . , αm) such that

α1 ≥ · · · ≥ αm and α1 > αm.

Each candidate receives points from each voter based on the candidate’s
position in the voter’s preference ranking: a candidate ranked j-th receives
αj points.The k-approval voting rule, for k ∈ [m − 1], is a particular case of PSR
where αj = 1 for all j ∈ [k], and αj = 0 for all k < j ≤ m. The plurality rule is
the 1-approval rule and the veto rule is the (m− 1)-approval rule. The Borda
rule is the PSR characterized by an evenly spaced positional score vector, e.g.,
α = (m− 1,m− 2, . . . , 1, 0).

Let us consider the same preference profile as in Example 4 and compare
with the Borda rule.
Example 5. Consider an election with seven voters and three candidates, with
voters’ preferences as follows:

x1 ≻1 x2 ≻1 x3
x1 ≻2 x2 ≻2 x3
x1 ≻3 x3 ≻3 x2
x2 ≻4 x3 ≻4 x1
x2 ≻5 x3 ≻5 x1
x3 ≻6 x2 ≻6 x1
x3 ≻7 x2 ≻7 x1
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In this example x1 is elected using plurality. However, under the Borda rule, the
candidate ranked first in a preference order receives 2 points, the second receives
1 point, and the third receives 0 points. Therefore, x1 obtains 6 points, x2 obtains
8 points, and x3 obtains 7 points. Hence, x2 is elected under the Borda rule.

All these voting rules appear natural, as they are basedon intuitive ideas of
assigning points to candidates. The simplest rule one can think of is plurality,
where each voter assigns one point to a single candidate. Building on this idea,
other scoring rules assign points to candidates with respect to their position
in the voter’s preference ranking, namely positional scoring rule. These rules
have the particularity of evaluating each candidate individually, based solely
on their position in the voters’ preference orders, which is not always the case
for other voting rules.

Another type of rule commonly used in practice is scoring rules with run-
off. A typical example is plurality with runoff. In this rule, only the two candi-
dates with the highest plurality scores in the first round proceed to the second
round. In case of a tie, a predefined tie-breaking rule must be applied. Then,
the preference profile is updated by removing all other candidates from each
voter’s ranking. The candidate who wins under plurality in this reduced pro-
file is declared the overall winner. Building on that rule, we also have instant-
runoff, in which one candidate with the lowest plurality score is eliminated in
each round (up tom− 1 rounds).

However, other solution concepts have been proposed, instead of evaluat-
ing the candidates on their absolute position in the voters’ preferences, other
voting rules take into account pairwise comparisons of candidates. For this
purpose, we present the notion of Condorcet winner.
Definition 3 (Condorcet winner). A candidate x is the Condorcet winner if she
beats all the other candidates in pairwise comparisons, i.e., |Nx≻y| > |Ny≻x|, for
every candidate y ∈ M \ {x}. A weak Condorcet winner x is such that |Nx≻y| ≥
|Ny≻x|, for every candidate y ∈M \ {x}.

We define symmetrically the (weak) Condorcet loser. In general, a (weak)
Condorcet winner does not always exist. Otherwise, we obtain a Condorcet
cycle, as illustrated in the following example.
Example 6. Let us consider the following profile with 3 candidates and 3 voters:

x1 ≻1 x2 ≻1 x3
x2 ≻2 x3 ≻2 x1
x3 ≻3 x1 ≻3 x2

If we compute pairwise comparisons we have:

• Comparing x1 and x2, we see that voters 1 and 3 prefer x1, so |Nx1≻x2 | ≥
|Nx2≻x1 |.
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• Comparing x2 and x3, we see that voters 1 and 2 prefer x2, so |Nx2≻x3 | ≥
|Nx3≻x2 |.

• Comparing x3 and x1, we see that voters 2 and 3 prefer x3, so |Nx3≻x1 | ≥
|Nx1≻x3 |.

Let us illustrate these computations:

x1 x2

x3

2

22

Figure 2.2: Majority graph of a Condorcet cycle
Therefore, we have a Condorcet cycle, since no candidate wins all pairwise

comparisons.

However, a (weak) Condorcet winner always exists when the preferences
are single-peaked and m is odd (when m is even) [Black, 1958]. A voting rule
which always elects the Condorcet winner, when it exists, is called Condorcet-
consistent. Note that PSRs are not Condorcet-consistent [de Caritat mar-
quis de Condorcet, 1785].

Let us illustrate all these concepts.
Example 7. Consider an election with seven voters and three candidates, with
voters’ preferences as follows:

x1 ≻1 x2 ≻1 x3
x1 ≻2 x2 ≻2 x3
x1 ≻3 x3 ≻3 x2
x2 ≻4 x3 ≻4 x1
x2 ≻5 x3 ≻5 x1
x3 ≻6 x2 ≻6 x1
x3 ≻7 x2 ≻7 x1

In the pairwise comparisons, candidate x2 defeats both x1 and x3, while x3
only defeats x1, and no candidate defeats x2. Therefore, x2 is the Condorcet win-
ner. In the veto rule, candidate x2 receives no last-place rankings and thus obtains
the maximum possible score. In contrast, x1 is ranked last by 4 voters and x3 by
2 voters, receiving fewer points. Therefore, x2 is the winner under the veto rule. In
the first round, x1 receives the most first-place votes and qualifies for the runoff
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along with x2. In the second round, x2 is preferred over x1 by a majority of voters
(4 out of 7). Therefore, x2 is the winner under the plurality with runoff rule. The
results are summarized in the following table.

Voting Rule Scores Winner
x1 x2 x3

Plurality 3 2 2 x1Borda 12 14 11 x2Condorcet (pairwise wins) 0 2 1 x2Veto (2-approval) 3 7 5 x2Plurality with runoff (2nd round) 3 4 – x2

Table 2.1: Scores and winners under various voting rules for the profilein Example 7.

These different voting rules illustrate the diversity of ways to aggregate
individual preferences. This naturally leads to the question of which rule to
choose in practice.

2.4 . A Taste of Impossibility Theorems in Voting Theory

Some seminal works on voting theory by Arrow [1950] study the design of
good voting rules with an axiomatic approach. We present the first impossi-
bility theorem using the more general concept of social welfare functionwhich
is slightly more general than the one of voting rules. Indeed, a social welfare
function takes a preference profile and returns a ranking of all candidateswith
respect to a criterion that should describe the best for the society as a whole,
namely SWF : (Πm)n → Πm, denoted ≻SWF . We can easily recover a voting
rule (i.e. social choice function) with a unique winner by taking the first one of
that ranking.

Let us now give some examples of axiomatic properties that may be de-
sirable. First of all, we want the social welfare function to avoid dictatorship,
meaning that the social ranking should not always coincide with the prefer-
ences of a single individual i fixed in advance, regardless of the preferences of
the other voters. Wemight alsowant that a social welfare function prefers one
candidate to another if every voter prefers this candidate. Thus, we say that
a social welfare function is weakly Paretian if, for any two candidates a, b ∈M ,
if for every i, a ≻i b, then a ≻SWF b.

Another desirable axiomatic property could be the one of independence of
irrelevant alternatives, which is the idea that if two candidates are ranked in a
certain order, the addition of a new candidate should not affect their relative
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ranking. Specifically, the relative ranking a ≻SWF b or b ≻SWF a should not
be affected by another candidate c.

We are now ready to present Arrow’s impossibility theorem.
Theorem1 (Arrow’s impossibility theorem, 1950). When there are three ormore
candidates, every social welfare function that is weakly Paretian and independent
of irrelevant alternatives must be a dictatorship.

Many ideas have been brought into the field to try to circumvent
this impossibility result, including relaxing some axioms, restricting prefer-
ence domain (single-peaked profile for example) or using probabilistic tools
(see Brandt et al. [2016] for a survey).

A second classical result that we will need to contextualize our work is
the impossibility theorem of Gibbard and Satterthwaite [Gibbard, 1973; Sat-
terthwaite, 1975], basically saying that no voting rule can avoid strategic vot-
ing when there are more than three candidates. To introduce it, we will need
to make some adaptations and introduce new concepts.

The adaptation of the notion of dictatorship for a voting rule is that the
voting rule should not always coincide with the top preference of a single indi-
vidual i fixed in advance, regardless of the preferences of the other voters. A
quite natural and desirable property for a voting rule is non-imposition, which
means that any candidate can be elected in at least one possible profile of in-
dividual preferences, i.e., for all candidate c, there exists a preference profile
P where the voting rule elects c. Additionally, one might wish for a voting
rule to be strategyproof, implying that no voter has an incentive to misreport
her preference to obtain a better outcome. Indeed, a voting rule F is strate-
gyproof for a voter i if for all profile P there is no other profile P ′ where i

has changed its vote such that F(P ′) ≻i F(P). A voting rule is said to be
strategyproof if it is strategyproof for all voters. Finally, we say that a voting
rule is resolute if it always elects one candidate.
Theorem2 (Gibbard-Satterthwaite’s impossibility theorem, 1973; 1975). When
there are three or more candidates, every voting rule that is resolute, nonimposed
and strategyproof must be a dictatorship.

This theorem has inspired numerous works in computational social
choice, either aiming to limit voters’ ability to manipulate outcomes through
algorithmic complexity (see Chapter 6 of Brandt et al. [2016] for a survey) or
allow manipulation and trying to model strategic behavior (see [Meir, 2022]
for a survey).

2.5 . Strategic Voting

This line of research attempts to circumvent the impossibility result stated
in Theorem2by allowing for votermanipulation and analyzing strategic voting
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through a game-theoretical approach. Indeed, since voters may act strategi-
cally, a ballot does not necessarily reflect the voter’s true preferences. For in-
stance, under the plurality rule, the chosen candidatemight not be the voter’s
top ranked option, as shemay have voted strategically to improve the election
outcome from her perspective. We will examine this phenomenon as an iter-
ative model called iterative voting.

In iterative voting, the goal is to study strategic behavior from a game-
theoretical and discrete perspective. At each step, one voter is allowed to
change her ballot. The process reaches a Nash equilibrium when no voter
wishes to update her ballot given the available information. However, con-
vergence is not guaranteed in general, cycles in strategic moves may prevent
the process from terminating. In this thesis, we focus on one specific voting
rule, plurality, due to its simplicity, naturalness, and widespread use. Its struc-
tural properties also make the analysis of strategic behavior more tractable.

Therefore, we consider plurality with lexicographic tie-breaking ▷ to be
the voting rule.

Recall that the winner under plurality of the ballot profile b is WP (b) ∈
argmaxx∈M sx(b), where sx(b) := |{i ∈ N : bi = x}| and a lexicographic
tie-breaking, denoted by ▷, is used if necessary. By abuse of notation, we
sometimes write sx instead of sx(b). Let Imn be the set of all possible candi-
dates’ scores under plurality, i.e., Imn := {s ∈ Nm |

∑m
j=1 sj = n}. By abuse of

notation, we sometimes writeWP (s) to refer to the winner of a score vector
s. Let s⊤ denote the candidates’ scores in b⊤. We will present the classical
iterative voting model introduced by Meir et al. [2010], along with its subse-
quent developments as reviewed in the survey byMeir [2022], and generalized
by Wilczynski [2019].

Initially, all voters vote truthfully, therefore the initial ballot profile b0 is ex-
actly the truthful ballot profile b⊤. Then they change their ballot strategically
following a best response strategy which consists in supporting their preferred
candidate within the set of so-called potential winners. A candidate y is a po-
tential winner for voter i, at a given step where the current score vector is
s, if i believes that voting for y will make candidate y the new winner, i.e.,
s−i
WP (s−i)

−s−i
y +1WP (s−i)▷y ⩽ 1, where s−i denotes the score vector swithout

counting the current ballot bi of voter i. Let PW t
i denote the set of potentialwinners for voter i at step t, and PW t the set of all potential winners at step

t, i.e., PW t :=
⋃

i∈N PW t
i .
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Example 8. Figure 2.3 shows a situation in which voter i, whose preference order
is x3 ≻i x1 ≻i x2, has two potential winners x1 and x2, that is, PWi = {x1, x2}.

x1 x2 x3
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2

4

6

+14

5

2

Nu
mb

ero
fvo

tes

Figure 2.3: Pivotal situation for a voter x3 ≻ x1 ≻ x2

When only a score vector is mentioned without a reference to a specific
time step t, wemaydirectlywritePW (s) to denote the set of potential winners
according to a given score vector s. Note that this definition is independent
of the preference profile.

At every step, one voter may change her vote to a best response accord-
ing to the following behavior. For each voter i at step t, where the current
winner is denoted by wt−1: i deviates from her current ballot bt−1

i to another
ballot bti supporting candidate y ∈ PW t−1

i \ {wt−1} if y is her most preferred
candidate within PW t−1

i . Note that this behavior corresponds to “direct" best
response [Meir et al., 2010]. For example, in Figure 2.3, a move from x3 to x1is a direct best response.

Example 9. Consider an election with five voters and four candidates, with voters’
preferences as follows:

x1 ≻1 x3 ≻1 x4 ≻1 x2
x2 ≻2 x1 ≻2 x3 ≻2 x4
x3 ≻3 x2 ≻3 x1 ≻3 x4
x4 ≻4 x2 ≻4 x1 ≻4 x3
x4 ≻5 x3 ≻5 x1 ≻5 x2
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Figure 2.4: Number of votes per candidate over the steps of iterative voting
When needed, a lexicographic tie-breaking rule is used. Initially, in the truthful

preference profile, x4 is the winner. Voter 1 has an incentive to change her vote
from x1 to x3, as this would make x3 the new winner, which she prefers to x4.
Then, voter 4 may deviate from x4 to x2 in order to elect x2 instead of x3, which
is a better outcome for her. Finally, voter 5 can change her vote from x4 to x3 to
ensure that x3 is elected rather than x2, which she prefers. At this point, no voter
has an incentive to deviate further, and x3 is thus the final winner.

This example gives us a glimpse of how this model works, but it says noth-
ing about the impact of the order in which strategic moves are made. The
question of describing the diversity and qualitative characteristics of the win-
ner will be addressed in Chapter 4. However, one other concern with this
model is that polls are not fully reliable. This unreliability arises for several
reasons. For instance, polling institutes only survey a subset of voters, and
some respondents may be unsure of their views at the time of the poll or
may intentionally misrepresent their preferences. These questions will be ad-
dressed respectively in Chapter 6 and Chapter 5.

We now turn to a final prerequisite for reading this thesis: the probabilistic
tools used to study the variability of voting outcomes. As alreadymotivated in
the introduction, we adopt a probabilistic perspective to provide quantitative
insights into the voting problems under consideration.
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2.6 . Probabilistic Modeling of Preferences

Instead of analyzing voting rules purely from an axiomatic angle, we could
take a quantitative perspective. Although the axiomatic approach offers valu-
able insights into the qualitative properties that voting rules satisfy, it does not
provide any information about how frequently these properties hold when
they are not always satisfied. More generally, many papers investigate voting
problems as decision problems, addressing interesting computational ques-
tions and sometimes complementing the analysis with experiments. Empir-
ical studies based on computer simulations can be a valuable complement
to theoretical results in various voting problems, such as manipulation, win-
ner determination, bribery, or the analysis of possible and necessary win-
ners [Brandt et al., 2016]. Ideally, onewould rely on real-world data to quantify
suchphenomena, for instance by using the Preflib platform [Mattei andWalsh,
2013]. However, real-world data are often limited in scope and highly context
dependent, which may hinder the generalizability of experimental findings.
In contrast, synthetic data enable the simulation of elections of arbitrary size
and offer full control over the experimental parameters.

However, for experiments to be meaningful, we also need to simulate re-
alistic elections, raising the question of a compromise between realism and
flexibility. A large number of statistical distributions exist for generating elec-
tions [Boehmer et al., 2024]. We present these objects, which will be key to
our analysis, and will study them from both a practical and a theoretical per-
spective. Let us denote as C(n,Πm) the probability distribution of drawing
n preference orders from Πm to constitute a preference profile P ∈ (Πm)n.
Such a probability distributionC(n,Πm) is called a culture. Let us first consider
independent and identical drawings of voters’ preferences such that we can
either look at the distributionC(n,Πm) as awhole object orndrawings of pref-
erences≻i. We denote byPC the associated probability distribution. We also
denote by C(n,Πm

sub) a probability distribution over a subdomain Πm
sub ⊆ Πm

of the set of preference profiles. We begin by presenting the simplest possi-
ble culture one can consider in the absence of any prior information, namely
the impartial culture.
Definition 4 (Impartial culture). The impartial culture, called IC , draws every
preference order ≻ from Πm with uniform probability, i.e., PIC(≻) = 1

m! .

Let us give a short example to illustrate impartial culture.
Example 10. Consider an election of three candidates, we might considerΠ3 and
give equal weight to all orders, i.e., for all ≻ from Π3 , PIC(≻) = 1

6 .

Another point of view to choose a distribution of preferences, without any
additional information, is the impartial anonymous culture, which assumes a
uniform distribution over preference profiles.
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Definition 5 (Impartial anonymous culture). The impartial anonymous culture,
called IAC , draws every profile P from (Πm)n with uniform probability.

Let us give a short example to illustrate impartial anonymous culture.
Example 11. Consider an election of three candidates and four voters, we might
consider (Π3)4 and give equal weight to all preference profiles, i.e., for allP from
(Π3)4 , PIAC(P) = 1

(95)
= 1

126 .

Therefore, this provides an idea of the quantitative differences. Mathe-
matically, under IC the voters’ preferences are independent, whereas under
IAC the entire profile is drawn at once, making the voters’ preferences depen-
dent. From a broader perspective, the underlying idea is quite different: IAC
draws a single profile from the set of all possible profiles, whereas IC draws
each voter’s preference independently. In particular, this means that under
the IAC model, all plurality score vectors are drawn with equal probability,
whereas the IC model tends to assign higher probability to more balanced
scores.

These two cultures are very important to study because they do not favor
any candidate by construction. However, if we wish to consider a structure
in the voters’ preferences, such as a single-peaked axis representing a left-
right political spectrum, then impartial cultures are far from capturing such a
setting. The following remark provides further insight into that idea.
Remark 3. Consider an election of three candidates, wemight suppose that a left-
right axis> structure preferences in the sense of Definition 1 (e.g., political context).
Without lost of generality, we can suppose that the axis is x1 > x2 > x3. Then,
as we have already seen in Example 3, x1 ≻ x3 ≻ x2 and x3 ≻ x1 ≻ x2 are not
single-peaked with respect to >. The question then becomes how to draw such
preferences in this context. Two approaches can address this issue: either exclude
these preferences altogether (assign them zero probability) or include them but
with a lower probability.

Following the previous remark, we define single-peaked cultures as distri-
butions that only generate single-peaked orders with respect to a given axis.
Definition 6 (Single-peaked culture). For a given axis > over M , a culture
C(n,Πm

sub) is said to be single-peaked if C(n,Πm
sub) = C(n,Πm

> ).

We might sample single-peaked preference orders by drawing them uni-
formly on the restricted space of single-peaked preference orders Πm

> . Theassociated culture then refers to Walsh’s model [Walsh, 2015]. Another way
to impartially sample single-peaked preference orders is to use the model
of Conitzer [Conitzer, 2007], which generates preferences inΠm

> by first choos-
ing a peak uniformly at random among the candidates, and then iteratively
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selecting the next candidate uniformly from those immediately to the left or
right of the last chosen one on the axis, thus ensuring that each candidate is
equally likely to be ranked first under plurality.
Definition 7 (Walsh’s distribution). TheWalsh’s distribution πW : Πm

> → [0, 1]

is such that πW (≻i) =
1

2m−1 , for every ≻i∈ Πm
> .

Here is a small example to illustrate Definition 7.
Example 12. Consider an election of three candidates, if we suppose an axis x1 >
x2 > x3. Walsh’s distribution is given by:

Order ≻ Probability
(x1 ≻ x2 ≻ x3) 0.25
(x2 ≻ x1 ≻ x3) 0.25
(x2 ≻ x3 ≻ x1) 0.25
(x3 ≻ x2 ≻ x1) 0.25

Definition 8 (Conitzer’s distribution). The Conitzer’s distribution πC : Πm
> →

[0, 1] is such that πC(≻i) =
1
m ·

1

2
min{r≻i

(x1),r≻i
(xm)}−1 for every ≻i∈ Πm

> .

This definition is equivalent to the algorithm proposed by Conitzer [2007].
The peak is selected uniformly at random, corresponding for the 1

m term.
Once the peak is fixed, the next candidate is chosen uniformly among the two
candidates adjacent on the axis >, making the process dependent on the rel-
ative positions of the two extreme candidates. Specifically, once one of these
two extreme candidates is selected, the rest of the ranking is completed by
successively adding the remaining candidates on the same side with respect
to the axis >. Here is a small example to illustrate Definition 8.
Example 13. Consider an election of three candidates, if we suppose an axis x1 >
x2 > x3. Walsh’s distribution is given by:

Order ≻i Probability
(x1 ≻ x2 ≻ x3) 1/3
(x2 ≻ x1 ≻ x3) 1/6
(x2 ≻ x3 ≻ x1) 1/6
(x3 ≻ x2 ≻ x1) 1/3

These two approaches will be expanded and studied in Chapter 3. We can
also mention another culture which is also a restriction on a single-peaked
axis but with impartial anonymous culture [Saari and Valognes, 1999].

On a different note, one might consider alternative structures, such as Eu-
clidean distributions [Boehmer et al., 2024]. This distribution relies on a differ-
ent structure than the single-peaked domain, namely the Euclidean domain.
Candidates and voters are placed as points in a d-dimensional space, where
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each voter ranks candidates according to their proximity (with respect to a
chosen distance), preferring closer candidates over those farther away. For
example, in two dimensions, this corresponds to placing the candidates in a
two-dimensional plane. In the context of political elections, the two axes could
represent cultural liberalism and economic liberalism. From amore technical
perspective, an important distinction is that the Euclideanmodel accounts for
distances between candidates in a quantitative way, unlike the single-peaked
domain which is purely ordinal.

Next, we detail on the second point in Remark 3 by presenting the Mal-
lows culture, where the probability of a preference order decreases with its
distance from a fixed reference order.
Definition 9 (Mallows culture, 1957). For given σ ∈ Πm and ϕ ∈ [0, 1], the
Mallows culture, called Mϕ,σ , draws every preference order with a probability
related to its distance to the reference ranking σ, more precisely, PMϕ,σ(≻i) =
1
Zϕ

distKT (≻i,σ) where Z =
∑

≻i∈Πm ϕdistKT (≻i,σ).

Note that cultureM1,σ corresponds to the impartial culture.
Let us give a toy example for a three candidates election.

Example 14. Consider an election of three candidates, we might consider σ =

x1 ≻ x2 ≻ x3. The Mallows distribution with parameter ϕ = 0.5 and the Kendall-
Tau distance is given by:

PM0.5,σ(≻i) =
1

Z
(0.5)distKT (≻,σ),

Order ≻ distKT (≻, σ) (0.5)distKT (≻,σ)

(x1 ≻ x2 ≻ x3) 0 1
(x1 ≻ x3 ≻ x2) 1 0.5
(x2 ≻ x1 ≻ x3) 1 0.5
(x2 ≻ x3 ≻ x1) 2 0.25
(x3 ≻ x1 ≻ x2) 2 0.25
(x3 ≻ x2 ≻ x1) 3 0.125

For example, distKT ((x1 ≻ x2 ≻ x3), (x1 ≻ x3 ≻ x2)) = 1, since one can
obtain the latter by interchanging x2 and x3 in the former. We now compute the
re-normalization constant:

Z = 1 + 0.5 + 0.5 + 0.25 + 0.25 + 0.125 = 2.625

With the following computation

PM0.5,σ(≻) =
distKT (≻, σ)

2.625

we are able to conclude our toy example:

30



Order ≻ Probability
(x1 ≻ x2 ≻ x3)

1
2.625 ≈ 0.381

(x1 ≻ x3 ≻ x2)
0.5

2.625 ≈ 0.190
(x2 ≻ x1 ≻ x3)

0.5
2.625 ≈ 0.190

(x2 ≻ x3 ≻ x1)
0.25
2.625 ≈ 0.095

(x3 ≻ x1 ≻ x2)
0.25
2.625 ≈ 0.095

(x3 ≻ x2 ≻ x1)
0.125
2.625 ≈ 0.048

x3
≻ x2

≻ x1
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Figure 2.5: Mallows distribution of preferences with three candidates with ϕ =
0.5 and reference order σ = x1 ≻ x2 ≻ x3

This model presented in Figure 2.5 is frequently used in experi-
ments [Boehmer et al., 2024], being the second most popular after impartial
culture, as it appears in 28.5% of the papers considered in this survey of nu-
merical experiments. We also want to present a last model which is a bit dif-
ferent since it does not suppose the independence of voters’ drawings.
Definition 10 (Pólya-Eggenberger culture, 1923). The Pólya-Eggenberger urn
model, P-E(r) where r ∈ R∗

+ and R = m! · r, draws a preference profile P in
(Πm)n as follows:

• We consider an urn initially containing m! balls representing the m! differ-
ent preference orders from Πm, i.e., each ℓth preference order from Πm is
initially drawn with probability βℓ = 1

m!

• To generate our preference profile P with n voters, we proceed as follows:
for each voter, we draw a ball from the urn and assign the corresponding
preference order to the voter. After each draw, the ball is returned to the
urn along with R additional copies, where R > 0.
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For example, taking r = 1
9 gives the well-known UM10 model which is

10%-correlation urn. Note that culture P-E( 1
m!) corresponds to the impartial

anonymous culture.
Of course, many other ways to simulate preference data exist [Boehmer

et al., 2024]. However, we only present those that are both common and use-
ful for the remainder of the thesis.

We end up this section of preliminaries with some probabilistic tools that
will be useful.

2.7 . Probabilistic Tools

This section is devoted to presenting some probabilistic results that will be
needed for the remainder of the thesis. We begin with two lemmas from Ho-
effding [1994], which will be useful to derive bounds on the speed of conver-
gence toward a limiting behavior. Indeed, while some results are asymptotic,
typically with respect to the number of voters, it is often desirable to assess
whether these results still hold in small elections of reasonable size.
Lemma 4 ([Hoeffding, 1994]). Let Xk be some independent real random vari-
ables, and (ak)k∈[n] and (bk)k∈[n] two real sequences such that for every k ∈ [n],
we have ak < bk and P(ak ⩽ Xk ⩽ bk) = 1. Then, for every t > 0,

P(Sn − E(Sn) ⩾ t) ⩽ e
−2t2∑n

k=1
(bk−ak)2 , where Sn =

∑n
k=1Xk.

Lemma 5 ([Hoeffding, 1994]). Let Xk be some independent real random vari-
ables, and (ak)k∈[n] and (bk)k∈[n] two real sequences such that for every k ∈ [n],
we have ak < bk and P(ak ⩽ Xk ⩽ bk) = 1. Then, for every t > 0,

P(Sn − E(Sn) ⩽ −t) ⩽ e
−2t2∑n

k=1
(bk−ak)2 , where Sn =

∑n
k=1Xk.

These lemmas are particularly useful when studying asymptotic phenom-
ena, typically with respect to the number of voters in a voting situation, and
when we wish to determine how quickly such phenomena arise as the num-
ber of voters increases. They allow us in particular to derive bounds on the
probability that a given event occurs.

Another result that will be useful, even though it is quite simple, is the
following:
Lemma 6 ([Bonferroni, 1936]). P(⋂n

i=1Ai) ⩾
∑n

i=1P(Ai)− (n− 1).

We end this section by another probabilistic result, namely the Glivenko-
Cantelli theorem [Cantelli, 1935]. In our voting situations, this theorem allows
us to verify that a phenomenon indeed occurs asymptotically with respect
to the number of voters. If a property holds for the limit profile of a proba-
bility distribution over preferences, then any sequence of empirical profiles
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sampled independent and identical from that distribution will asymptotically
satisfy the property almost surely.
Theorem 7 (Glivenko–Cantelli, 1935). Let (Ω,A,P) be a probability space. Let
(Xi)1≤i≤n be independent and identically distributed random variables with com-
mon cumulative distribution function F . For ω ∈ Ω , we denote by Fn(·, ω) the
empirical distribution function of the sample (Xi)1≤i≤n(ω). Almost surely, the em-
pirical distribution function Fn converges uniformly to the distribution function F ,
in other words,

Pω

(
lim
n→∞

∥Fn(·, ω)− F∥∞ = 0
)
= 1.

Wenowhave all the necessary tools to begin our study of voting outcomes’
variability.
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3 - Agreement Among Voting Rules on the
Same Outcome

Abstract
Many different voting rules have been proposed in the literature and they can
select very different alternatives. This naturally raises the question of whether
this diversity in outcomes often occurs. Our goal in this chapter is to offer a
probabilistic perspective on this question. Previous works have shown that
the probability of agreement between voting rules is generally quite lowunder
impartial culture. We use a similar probabilistic approach on single-peaked
cultures. We describe voting rules to agree under standard single-peaked cul-
tures, and show that the probability of agreement between rather large fami-
lies of voting rules is much higher under such cultures, with fast convergence
of this probability with respect to the number of voters. We finally provide
some insights on other structured preference distributions, observing that
many exhibit similar convergence in agreement, including the Mallows’ distri-
bution. Our study reveals a tendency of several well-known voting cultures to
bias the outcome of voting rules, which is worth knowing before conducting
experiments on synthetic data.

Résumé
De nombreuses règles de vote ont été proposées dans la littérature et elles
peuvent sélectionner des alternatives très différentes. La question se pose
alors de savoir si cette diversité de gagnants se produit souvent en pratique.
Ce chapitre est donc consacré à la question de l’accord entre les règles de
vote. Des travaux antérieurs ont montré que la probabilité d’accord entre rè-
gles de vote est généralement assez faible sous des cultures de préférences
uniformes. Nous utilisons une approche probabiliste similaire sur des cul-
tures “single-peaked". Nous décrivons les règles de vote s’accordent sous ces
cultures et nousmontrons que la probabilité d’accord d’une grande famille de
règles de vote est beaucoup plus élevée dans ce cadre, avec une convergence
rapide en fonction du nombre de votants. Enfin, nous donnons un aperçu
d’autres distributions de préférences structurées, en observant que nombre
d’entre elles présentent une convergence similaire, y compris la distribution
de Mallows. Notre étude révèle que plusieurs cultures de vote connues ont
tendance à biaiser le résultat des règles de vote, ce qui est important à savoir
avant de mener des expériences sur des données synthétiques.

Most of the content of this chapter is based on a paper co-authored with VincentMousseau and Anaëlle Wilczynski, which was accepted at the 28th European Confer-ence on Artificial Intelligence (ECAI 2025) [Mousseau et al., 2025b].
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3.1 . Introduction

Our investigation into the variability of voting outcomes begins with this
first chapter, which focuses on how outcomes change under different voting
rules. This is a central issue in voting theory where much attention is given
to designing effective voting systems. However, as we recall in Chapter 2 the
social choice literature is famous for impossibility theorems, e.g., Arrow theo-
rem [Arrow, 1950] or Gibbard-Satterthwaite theorem [Gibbard, 1973; Satterth-
waite, 1975] basically stating that no perfect voting rule exists. Many different
voting rules have beendesigned along the years, and a large body of literature,
including these two impossibility theorems, is devoted to their axiomatic char-
acterization [Arrow et al., 2010]. In fact, different voting rules can select very
different alternatives. Here is a motivating example of our research question.
Example 15. Consider an election with five candidates and fourteen voters, with
voters’ preferences as follows:

∀i ∈ {1, · · · , 5}, x1 ≻i x3 ≻i x2 ≻i x4 ≻i x5
∀i ∈ {6, · · · , 9}, x5 ≻i x2 ≻i x3 ≻i x4 ≻i x1
∀i ∈ {10, · · · , 12}, x4 ≻i x3 ≻i x2 ≻i x5 ≻i x1
∀i ∈ {13, · · · , 14}, x2 ≻i x4 ≻i x5 ≻i x3 ≻i x1

In this preference profile, candidate x1 is the winner under plurality, x2 under
Borda, x3 is the Condorcet winner (and thus the winner under any Condorcet-
consistent rule) and also the winner under 2-approval, while x5 wins under plural-
ity with runoff.

This example has illustrated that the election winner can strongly depend
on the choice of voting rule. The purpose of this chapter is to investigate
whether such phenomenaoccur frequently. More specifically, we aim to study
cases in which preference profiles exhibit a high degree of structure, such as
when preferences are aligned along a single axis or centered around a specific
preference.

Note that for the rest of the chapter, we limit ourwork to positional scoring
rules and Condorcet-consistent rules. Also, in the case of m = 2 candidates,
all PSRs coincide and gaining one point for a candidate in a PSR is equivalent
for this candidate to be ranked before the other candidate, breaking the gap
between absolute and relative evaluation of candidates. In that case, majority
voting can appear as the only reasonable voting rule [May, 1952]. Therefore,
given the focus of our chapter, we reasonably assume thatm > 2.

This second example illustrates that a slight modification of the prefer-
ence profile can completely alter the previously observed phenomenon re-
garding the agreement between voting rules. Indeed, by changing the prefer-
ences of only two voters, we observe the exact opposite behavior: plurality,
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Borda, 2-approval and Condorcet-consistent rules all agree on the same win-
ner.
Example 16. Consider an election with five candidates and fourteen voters, with
voters’ preferences as follows:

∀i ∈ {1, · · · , 5}, x1 ≻i x3 ≻i x2 ≻i x4 ≻i x5
∀i ∈ {6, 7}, x5 ≻i x2 ≻i x3 ≻i x4 ≻i x1
∀i ∈ {8, 9}, x3 ≻i x2 ≻i x5 ≻i x4 ≻i x1
∀i ∈ {10, 11, 12}, x4 ≻i x3 ≻i x2 ≻i x5 ≻i x1
∀i ∈ {13, 14}, x2 ≻i x4 ≻i x5 ≻i x3 ≻i x1

In this profile, candidate x3 is the winner under plurality, Borda, 2-approval
and is the Condorcet winner (and thus the winner under any Condorcet-consistent
rule).

These two examples are particularly illustrative, as they show two differ-
ent behaviors can arise: a disagreement of all voting rules under consider-
ation in Example 15 or an alignment of all voting rules as Example 16. This
motivates the current chapter, which aims to quantify how frequently one
phenomenon or its complement arises.

This issue has been raised by many articles [Gehrlein and Lepelley, 2010]
which study the probability that different voting rules disagree on their out-
come. Indeed, exploring the agreement among voting rules can help under-
stand the similarity between voting rules, in an orthogonal perspective than
the axiomatic study.

Most of the works on voting rules’ agreement focus on the impartial
(anonymous) culture, where each preference order (or score), is uniformly
drawn from the whole set of linear orders over candidates. Such study is
necessary because the impartial culture can arguably be seen as the most
neutral. However, it does not capture real voters’ preferences which are usu-
ally far from being uniformly distributed as survey in [Boehmer et al., 2024].
Moreover, most results on impartial culture highlight that voting rules not
often agree [Merlin et al., 2000]. Therefore, exploring more structured and
realistic cultures may provide new insights on differences between voting
rules. In this chapter, we will focus on cultures generating single-peaked pref-
erences [Black, 1948], which make sense in several contexts such as, e.g., po-
litical elections where a left-right axis can structure most voters’ preferences.
Even though single-peaked cultures are still far from being a perfect match to
real data [esc, 2021], they are much more realistic than impartial culture, so
these models can be seen as a better approximation of the reality in some
contexts (e.g., political elections).
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In another point of view, studying agreement between voting rules un-
der single-peaked cultures can also improve the understanding of such cul-
tures. A key question in computational social choice, and in particular in vot-
ing theory, is how to generate relevant synthetic data for experiments on elec-
tions [Boehmer et al., 2024], as already explained in Section 2.6.

Among all statistical distributions to generate synthetic data, single-
peaked distributions are quite often used, as reported by Boehmer et al.
[2024]. Therefore, exploring voting rules’ agreement under single-peaked cul-
tures is relevant to better understand these commonly used cultures and bet-
ter interpret experimental studies. Let us illustrate possible issues in the in-
terpretation of experiments. For instance, if one would like to compare how
often different rules violate themajority criterion (i.e., a candidate ranked first
by half of the voters should be elected), then experiments could be used. How-
ever, the conclusions may be very different depending on the voting culture
used to generate synthetic data. In particular, using single-peaked cultures
may lead to different conclusions compared to impartial culture, especially
if the results on voting rules’ agreement are very different. In particular, if
two voting rules frequently agree under a given culture then the results will
be similar because the voting rules are close under that culture, not because
of the problem itself. In any case, knowing how the statistical tool works is a
prerequisite for a good empirical study.

In this chapter, we study the probability of agreement of different voting
rules under single-peaked cultures. Up to our best knowledge, this question
has been surprisingly neglected for cultures more structured than impartial
ones. One notable exception is the work of Chatterjee and Storcken [2020]
on unimodal profiles. We focus our study on two well-known models to gen-
erate single-peaked elections: Walsh’s [Walsh, 2015] and Conitzer’s [Conitzer,
2007] models. They consider different ways of uniformly drawing single-
peaked preference orders: either uniformly within the whole single-peaked
domain [Walsh, 2015], or uniformly with respect to the peak candidate in the
order [Conitzer, 2007].

We particularly examine positional scoring rules (PSRs), which compute
scores for the candidates based on their position in the voters’ preferences.
This family coversmany famous voting rules, such as k-approval rules like plu-
rality or veto, and theBorda rule. We show that for bothWalsh’s andConitzer’s
distributions, many PSRs tend to elect the median candidate(s) in the single-
peaked axis, which turns out to be the asymptotic Condorcet winner, implying
that these rules also agree with Condorcet-consistent rules. We also provide
a lower bound on the speed of convergence to such a winner, meaning that
this result holds for reasonable election sizes. We characterize these rules
for both cultures and observe that this set is larger for Walsh’s distribution,
which is coherent with its definition. Conitzer’s distribution seems to be more
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neutral toward the candidates, in the sense of probability to be elected. We
further study this aspect by examining when single-peaked distributions are
unbiased, i.e., when they do not favor any candidate with respect to a given
voting rule.

We also provide some insights on the agreement among voting rules un-
der two other structured preference distributions: unimodal distributions,
which include Mallows’ cultures [Mallows, 1957], where we complete Theo-
rem 4.1 of Chatterjee and Storcken [2020] to prove a rapid convergence to
a large probability of agreement; and Pólya-Eggenberger urns [Eggenberger
and Pólya, 1923], where we show that even if the probability of agreement
remains high, the convergence toward one is not guaranteed. Finally, we ex-
amine real-world elections to understand how these phenomena appear in
practice.

Related Work:
The question of agreement among voting rules was initiated by Gehrlein

and Fishburn [1980, 1983] who give an explicit probability of agreement be-
tween two positional scoring rules in the case of three candidates under im-
partial culture. They prove that the probability of all scoring rules to agree in
large elections is 0.5346. Numerical experiments have also been conducted to
determine [Gehrlein, 1986; Nurmi, 2012] the value of the probability of agree-
ment on synthetic data. Many necessary conditions have then beenderived to
characterize the agreement of all positional scoring rules [Merlin et al., 2000;
Moulin, 1989; Saari, 2012], or the violation of the majority principle [Lepelley
and Merlin, 1998]. In particular, Merlin et al. [2000] give the probability (i.e.,
0.50116) under impartial culture that many rules (including positional scoring
rules, elimination rules and Condorcet-consistent rules) agree on the same
winner in the case of three candidates. This work was complemented via
Monte-Carlo simulations by Lepelley et al. [2000a] for more than three can-
didates. Similar results with explicit formulas have been found under anony-
mous impartial culture for three candidates [Gehrlein, 2002]. Most of these
works focus on three candidates, sometimes four [Kamwa and Merlin, 2019],
under the impartial (sometimes anonymous) culture and try to provide ex-
plicit formulas. One closely related line of work studies agreement among
elimination voting rules with three candidates under IAC restricted to the
single-peaked domain [Lepelley and Vidu, 2000]. In contrast, we focus on
single-peaked distributions with an arbitrary number of candidates and an-
alyze the conditions of convergence toward the same outcome.

In another perspective, manyworks have studied the Condorcet efficiency
of voting rules (see Gehrlein and Lepelley [2010] for a survey), i.e., their proba-
bility to elect a Condorcet winner, which can be seen as exploring how much
these rules agree with Condorcet-consistent rules. This question has also
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been investigated for structured cultures, such as impartial (anonymous) cul-
ture over the single-peaked domain [Gehrlein, 2003; Lepelley, 1994; Lepelley
et al., 2000b], and Pólya-Eggenberger urns [Gehrlein and Lepelley, 2009] but,
as far as we know, only for three candidates.

Another close question is the notion of consensus [Elkind et al., 2010; Had-
jibeyli andWilson, 2019], which is essentially setting a distance to find the clos-
est election that satisfies consensus, i.e., the onewhere theminimumnumber
of voters would disagree. Beyond voting rule agreement, the likelihood of the
occurrence of voting paradoxes has been widely investigated [Gehrlein and
Lepelley, 2010; Xia, 2020]. In addition, following the idea of asymptotic results,
many studies have been conducted in machine learning, making the link be-
tween a voting rule and a maximum likelihood estimator [Azari Soufiani et al.,
2014; Caragiannis et al., 2014; Xia, 2014]. In the same perspective, a work on
the asymptotic probability of ties in elections was proposed [Xia, 2021]. While
these directions may sometimes be outside of voting theory, it highlights the
importance of our research question.

3.2 . Probabilistic Frameworks Adapted for Voting Rules

This section is devoted to presenting the probabilistic foundations of our
problem, specifically the notion of expected winners within a culture, its con-
vergence bounds, and how sampling can be performed in the single-peaked
domain.

When considering independent and identical voter preference drawings,
the culture can be defined as drawing n preference orders ≻i from a given
preference distribution πm : Πm → [0, 1] with∑≻i∈Πm πm(≻i) = 1. The prob-
ability for a candidate xj to be ranked at position k ∈ [m] under preference
distribution πm is given by Pm

π (j, k) =
∑

≻i∈Πm:r≻i (xj)=k π
m(≻i). Moreover,

the probability for a candidate x to be ranked before a candidate y under
preference distribution πm is given by Pm

π (x ≻i y) =
∑

≻i∈Πm:x≻iy
πm(≻i).When the context is clear, the superscriptmmay be omitted.

Let SF (x) denote the random variable giving the score of a candidate x ∈
M for a voting rule F when all preference orders are drawn identically. Let
Eπ[S

F(x)] denote the expected score of candidate x for voting rule F under
distribution π. For a PSR F characterized by a positional score vector α and a
preference distribution π, the expected score of each candidate x is given by
Eπ[S

F (x)] =
∑

≻i∈Πm π(≻i) · αr≻i (x)
.

A special attention should be paid to the last subsection, Section 3.7.2,
where voter preferences are not drawn independently and identically.

3.2.1 . Convergence to the Expected Winners
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When voters’ preferences are identically and independently drawn with
respect to distribution π and Eπ[S

F(x)] is finite for any x ∈ M , by the law
of large numbers, the expected winnersWπ(F) of F under π areWπ(F) :=
argmaxx∈M Eπ[S

F (x)]. A candidate x is an asymptotic (weak) Condorcet win-
ner under distribution π if Pπ(x ≻i y) >

1
2 (resp., Pπ(x ≻i y) ≥ 1

2 ), for every
y ∈M \ {x}.

In addition to the guarantee of convergence to the election of expected
winners, we provide below a lower bound on the probability that an expected
winner actually wins, when we draw voters’ preferences independently and
identically with respect to a distribution π. This allows to get a more concrete
idea on whether this can happen in practice.
Theorem 8. For a positional scoring rule F defined by a score vector α, and a
preference distribution π over the set of candidatesM , the set of expected winners
is defined as

Wπ(F) = argmax
x∈M

Eπ[S
F (x)].

When this set is a singleton, i.e., Wπ(F) = {x}, the probability that F elects x
satisfies

Pπ(x ∈ F(P)) ≥ Lπ(F),

where:

Lπ(F) := 1− 2 · max
y∈M\Wπ(F)

exp

(
−2n ·

(
µF
π (y)− Eπ[S

F (y)]
)2

(maxj αj −minj αj)
2

)

and µF
π (y) :=

maxx∈M Eπ[S
F (x)] + Eπ[S

F (y)]

2

Proof. Let Eπ[S
F(y)]i be the expected score of candidate y with rule F for

voter i. LetWπ(F) = {x}, we have:
Pπ(x ∈ F(P)) = Pπ[∀y ̸= x,

n∑
i=1

SF (x)i >

n∑
i=1

SF (y)i]

Using Bonferroni’s inequality, which states that for any events A1, . . . , Am in
a probability space (Ω,F ,P),

P(A1 ∩ · · · ∩Am) ≥
m∑
i=1

P(Ai)− (m− 1),

we obtain:
Pπ[∀y ̸= x,

n∑
i=1

SF (x)i >

n∑
i=1

SF (y)i]

⩾
∑
x̸=y

Pπ[
n∑

i=1

SF (x)i >
n∑

i=1

SF (y)i]− (m− 2)
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⩾ (m− 1) ·min
y ̸=x

Pπ[
n∑

i=1

SF (x)i >
n∑

i=1

SF (y)i]− (m− 2)

Let us now compute a lower bound for Pπ[
∑n

i=1 S
F(x)i >

∑n
i=1 S

F(y)i]. Us-ing again Bonferroni’s inequality we have:
Pπ[

n∑
i=1

SF (x)i >

n∑
i=1

SF (y)i]

⩾ Pπ[
n∑

i=1

SF (x)i < n · µF
π (y)] + Pπ[

n∑
i=1

SF (x)i > n · µF
π (y)]− 1

Now, we work on each term separately,
Pπ[

n∑
i=1

SF (x)i < n · µF
π (y)]

= 1− Pπ[
n∑

i=1

SF (x)i ⩾ n · µF
π (y)]

Using the first Hoeffding’s inequality (Lemma 4) with ai = miny αy and bi =

maxy αy ,
Pπ[

n∑
i=1

SF (x)i ⩾ n · µF
π (y)]

= Pπ[
n∑

i=1

SF (x)i − n · Eπ[S
F (y)]i ⩾ n · µF

π (y)− n · Eπ[S
F (y)]i]

⩽ e
−2n(µFπ (y)−Eπ [SF (y)]i)

2

(maxy αy−miny αy)2

We reproduce the exact same reasoning for the second term
Pπ[
∑n

i=1 S
F(x)i > n · µF

π (y)] but we use the second Hoeffding’s inequal-
ity (Lemma 5). We summarize and find:

Pπ[

n∑
i=1

SF (x)i >

n∑
i=1

SF (y)i]

⩽ 1− e
−2n(µFπ (y)−Eπ [SF (y)]i)

2

(maxy αy−miny αy)2 − e
−2n(µF

π (y)−Eπ [SF (x)]i)
2

(maxy αy−miny αy)2

Finally, we get:
Pπ(x ∈ F(P)) ⩾ 1− 2 ·max

y ̸=x
e

−2n·(µF
π (y)−Eπ [SF (y)])2

(maxy αy−miny αy)2
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We can thus deduce a lower bound for the speed of convergence for the
agreement of several voting rules.
Corollary 9. For two positional scoring rules F1 and F2 whose expected winner
under a preference distribution π are the same, i.e., C :=Wπ(F1) =Wπ(F2), the
probability of their agreement for electing the same unique candidate from C is
such that: Pπ(F1(P) = F2(P)) ⩾ min{Lπ(F1), Lπ(F2)}.

Proof. We apply twice Theorem 8 and deduce that both rules F1 and F2 haveto agree on the same outcome with a probability higher than the minimum
of both lower bounds.

3.2.2 . Single-Peaked Distributions
We recall that single-peaked cultures are distributions C(n,Πm) such that

for a given axis > over M , C(n,Πm) = C(n,Πm
> ). This subsection addresses

the question of how to sample single-peaked elections without relying on any
additional information. Specifically, we assume that all candidates occupying
a similar position relative to the axis > should be treated identically.

Wedefine a bijection on ranking τ : [m]→ [m] as a function that associates
to a ranking another ranking.

Let us define the symmetry with respect to the single-peaked axis via the
bijection τ : [m]→ [m] which associates with each candidate xj its symmetric
candidate xτ(j) where τ(j) = m−j+1. We denote by [≻]τ =≻′ the preference
order obtained by replacing each candidate in ≻ with its image under the
function τ . We give a small example to illustrate this concept.
Example 17. Ifm = 4, then [x2 ≻i x3 ≻i x4 ≻i x1]

τ = x3 ≻i x2 ≻i x1 ≻i x4.

A single-peaked preference distribution π : Πm
> → [0, 1] is said to be sym-

metric if Pm
π (j, 1) = Pm

π (τ(j), 1), for every candidate xj ∈ M . Symmetric
single-peaked distributions form a rather large family of single-peaked distri-
butions which include, e.g., the distributions π such that Pm

π (xj ≻i xj+1) =

Pm
π (xτ(j) ≻i xτ(j+1)) for every j ∈ [⌊m2 ⌋], but not only. Using symmetric

single-peaked distributions turns out to be very natural, in order to derive ex-
periments on the single-peaked domain, without any additional information
than the single-peaked axis. Indeed, these distributions satisfy the property
of treating similar candidates similarly, whichwe believe to be the least biased
assumption one can make in the absence of prior information.

In particular, two distributions have met consensus in the literature to
sample single-peaked elections, and we already presented them in Chapter 2:
Walsh’s distribution (Definition 7) and Conitzer’s distribution (Definition 8).
They happen to be symmetric and capture different types of impartial culture
on the single-peaked domain. Roughly, the idea is either to uniformly draw
every single-peaked preference order in Walsh’s model, or to uniformly draw
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every peak candidate and then construct the rest of the preference order by
uniformly choosing the next candidate to rank between the closest available
candidates on the single-peaked axis in Conitzer’s model. One point worth
mentioning is that under Conitzer’s distribution, each candidate is elected
with the same probability under the plurality rule. In a sense, this culture can
be considered unbiased toward all candidates with respect to plurality. This
ideawill later be explored and developed inmuch greater depth in Section 3.6.

In this chapter, we aim at understanding the behavior of voting rules un-
der single-peakeddistributions. In particular, we analyze the conditions under
which PSRs agree, the location of the expected winners with respect to the
single-peaked axis and whether they are asymptotic (weak) Condorcet win-
ners.

3.3 . Asymptotic Condorcet Winners in The Single-Peaked Do-
main

Webegin by introducing some preliminaries on the single-peaked domain,
including the enumeration of single-peaked preference orders where a spe-
cific candidate is ranked at a given position, as well as a first result concerning
the asymptotic election of the Condorcet winner. Let us start with structural
properties of the single-peaked domain. We first recall that |Πm

> | = 2m−1.
Observation 10. Candidatexj can never be ranked at a position k > max{j,m−
j + 1} in a single-peaked order.

Proof. If k > m− j +1 (resp., k > j), then it means that there are not enough
positions between position k and position m to place at least all candidates
x1, . . . , xj−1 (resp., xj+1, . . . , xm), which is necessary in order to rank xj atposition k, by single-peakedness. It follows that, under such a condition, no
single-peaked preference order can rank xj at position k.
Lemma 11 (Boehmer et al. [2022]). The number of single-peaked preference or-
ders in Πm

> in which candidate xj is ranked at position k is given by the following
formula, for each j, k ∈ [m]:

Dm(j, k) = 2k−2

((
m− k

j − 1

)
+

(
m− k

j − k

))
.

Let C∗ denote the set of median candidates in the single-peaked axis, this
set is a singleton in casem is odd and is a pair of candidates in casem is even,
i.e.,

C∗ :=

{
{x⌈m

2
⌉} ifm is odd

{xm
2
, xm

2
+1} ifm is even

By convention, (nk) = 0 when k > n or k < 0.
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These candidates play an important role in the single-peaked domain. We
first show below that more preference orders rank them at good positions
compared to the other candidates.
Lemma 12. For every median candidate xc ∈ C∗ and any other candidate xj ∈
M \C∗, there exists an index γm(j) ∈ [max{j,m− j + 1}] such that Dm(c, k) ≥
Dm(j, k) for every 1 ≤ k ≤ γm(j) and Dm(j, k) > Dm(c, k) for every γm(j) <

k ≤ max{j,m− j + 1}.

Proof. Let us compare a median candidate xc ∈ C∗ and another candidate
xj ∈ M \ C∗ where, w.l.o.g., c := ⌈m2 ⌉ and j < c. Our goal is to com-
pare Dm(c, k) and Dm(j, k) for a given position k ∈ [m − j + 1], and thus,
by Lemma 11, to compare (m−k

c−1

)
+
(
m−k
c−k

) and (m−k
j−1

)
+
(
m−k
j−k

). Observe that(
m−k
c−k

)
=
(
m−k
m−c

)
=
(
m−k
⌊m

2
⌋
), and thus (m−k

c−k

)
=
(

m−k
c−1{m odd}

), implying that(
m−k
c−k

)
=
(
m−k
c−1

) whenm is odd.
Let us recall that, when n is fixed, the binomial coefficient (nℓ) is strictlyincreasing from ℓ = 0 to ℓ = n

2 and then strictly decreasing from ℓ = n
2 to

ℓ = n (in case n is odd, the two maximal values are taken for ℓ = ⌊n2 ⌋ and
ℓ = ⌈n2 ⌉, so it is fine to simply consider that the closest ℓ is to n

2 , the biggestthe value (nℓ). In our case, we have n = m − k, therefore the maximal value
of (m−k

ℓ

) is taken for ℓ the closest to m−k
2 . Observe that m−k

2 ≥ c − k. It
follows that (m−k

c−k

)
≥
(
m−k
j−k

), since we are in the increasing part. Moreover,
themaximal value ℓ = m−k

2 is always closer to c−1 than to j−k: if m−k
2 ≥ c−1

it is obvious and if m−k
2 < c − 1, then supposing j − k is closer would imply

m−k
2 − j + k < c − 1 − m−k

2 and thus, because j < c = ⌈m2 ⌉, we would have
c > m− j + 1 ≥ ⌊m2 ⌋+ 2, a contradiction. It follows that (m−k

c−1

)
≥
(
m−k
j−k

).
First observe that if k ≤ c − j + 1, then we have j − 1 ≤ c − k and thus

j−k ≤ j−1 ≤ c−k ≤ c−1. Since c−k ≤ m−k
2 , it follows that (m−k

c−k

)
≥
(
m−k
j−1

),
and thus, since (m−k

c−1

)
≥
(
m−k
j−k

), we have that Dm(c, k) ≥ Dm(j, k).
By Observation 10, we know that Dm(j, k) = 0 iff k > max{j,m − j + 1},

thereforeDm(c, k) = 0when k > ⌊m2 ⌋+1 andDm(j, k) = 0when j > m−j+1.
It follows that Dm(j, k) > Dm(c, k) for all ⌊m2 ⌋+ 1 < k ≤ m− j + 1.

To summarize, now we know that when k ≤ c− j+1, we have Dm(c, k) ≥
Dm(j, k) and when k > ⌊m2 ⌋+ 1, we have Dm(j, k) > Dm(c, k). It means that
there exists an index k such that Dm(c, k) ≥ Dm(j, k) and Dm(j, k + 1) >

Dm(c, k + 1). Let us consider the greatest such index k0 as our base case andsuppose, by induction, that Dm(c, k′) ≥ Dm(j, k′) for all indices k′ such that
k ≤ k′ ≤ k0 for a given index k ≤ k0. We will prove that if Dm(c, k) ≥ Dm(j, k)

holds, then Dm(c, k − 1) ≥ Dm(j, k − 1) also holds, which will be sufficient
to prove our statement about the existence of a unique threshold γm(j) to
distinguish when Dm(c, k) ≥ Dm(j, k) and when Dm(j, k) > Dm(c, k).

Suppose that Dm(c, k) ≥ Dm(j, k) holds for a given position k. By
Lemma 11, it means that (m−k

c−1

)
+
(

m−k
c−1{m odd}

)
≥
(
m−k
j−1

)
+
(
m−k
j−k

). By Pas-
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cal’s identity, we thus have (m−k+1
c−1

)
−
(
m−k
c−2

)
+
(

m−k+1
c−1{m odd}

)
−
(

m−k
c−1−1{m odd}

)
≥(

m−k+1
j−1

)
−
(
m−k
j−2

)
+
(
m−k+1
j−k+1

)
−
(

m−k
j−k+1

), which is equivalent to (m−k+1
c−1

)
+(

m−k+1
c−1{m odd}

)
≥
(
m−k+1
j−1

)
+
(
m−k+1
j−k+1

)
+
(
m−k
c−2

)
+
(

m−k
c−1−1{m odd}

)
−
(
m−k
j−2

)
−
(

m−k
j−k+1

).
If (m−k

c−2

)
+
(

m−k
c−1−1{m odd}

)
−
(
m−k
j−2

)
−
(

m−k
j−k+1

)
≥ 0 holds, then we have (m−k+1

c−1

)
+(

m−k+1
c−1{m odd}

)
≥
(
m−k+1
j−1

)
+
(
m−k+1
j−k+1

) and our claim follows, i.e., we haveDm(c, k−
1) ≥ Dm(j, k − 1). Let us thus assume, for the sake of contradiction, that(
m−k
c−2

)
+
(

m−k
c−1−1{m odd}

)
−
(
m−k
j−2

)
−
(

m−k
j−k+1

)
< 0.

(
m− k

c− 2

)
+

(
m− k

c− 1− 1{m odd}
)

<

(
m− k

j − 2

)
+

(
m− k

j − k + 1

)
⇔
(
m− k

c− 1

)
· c− 1

m− k − c+ 2
+

(
m− k

c− 1{m odd}
)
·

c− 1{m odd}
m− k − c+ 1 + 1{m odd}

<

(
m− k

j − 1

)
· j − 1

m− k − j + 2
+

(
m− k

j − k

)
· m− j

j − k + 1

⇔ c− 1

m− k − c+ 2
·
((

m− k

c− 1

)
+

(
m− k

c− 1{m odd}
))

+(
m− k

c

)
·

(m− k + 1) · 1{m even}
(m− k − c+ 2)(m− k − c+ 1)

<(
m− k

j − 1

)
· j − 1

m− k − j + 2
+

(
m− k

j − k

)
· m− j

j − k + 1

Since we have assumed Dm(c, k) ≥ Dm(j, k), it follows that:
c− 1

m− k − c+ 2
·
((

m− k

j − 1

)
+

(
m− k

j − k

))
+(

m− k

c

)
·

(m− k + 1) · 1{m even}
(m− k − c+ 2)(m− k − c+ 1)

<(
m− k

j − 1

)
· j − 1

m− k − j + 2
+

(
m− k

j − k

)
· m− j

j − k + 1

⇔
(
m− k

j − 1

)
·
(

c− 1

m− k − c+ 2
− j − 1

m− k − j + 2

)
+(

m− k

c

)
·

(m− k + 1) · 1{m even}
(m− k − c+ 2)(m− k − c+ 1)

<(
m− k

j − k

)
·
(

m− j

j − k + 1
− c− 1

m− k − c+ 2

)
⇔
(
m− k

j − 1

)
·
(

c− 1

m− k − c+ 2
− j − 1

m− k − j + 2

)
+(

m− k

j − 1

)
·
∏c−j+1

p=1 (m− k − c+ p)∏c−j+1
p=1 (j − 1 + p)

·
(m− k + 1) · 1{m even}

(m− k − c+ 2)(m− k − c+ 1)
<
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(
m− k

j − 1

)
·

∏k−1
p=1(j − k + p)∏k−1

p=1(m− k − j + 1 + p)
·
(

m− j

j − k + 1
− c− 1

m− k − c+ 2

)
⇔
(

c− 1

m− k − c+ 2
− j − 1

m− k − j + 2

)
+∏c−j

p=1(m− k − c+ 1 + p)∏c−j+1
p=1 (j − 1 + p)

·
(m− k + 1) · 1{m even}

(m− k − c+ 2)
<

∏k−1
p=1(j − k + p)∏k−1

p=1(m− k − j + 1 + p)
·
(

m− j

j − k + 1
− c− 1

m− k − c+ 2

)
⇔ (c− j)(m− k + 1)

(m− k − c+ 2)(m− k − j + 2)
+∏c−j

p=1(m− k − c+ 1 + p)∏c−j+1
p=1 (j − 1 + p)

·
(m− k + 1) · 1{m even}

(m− k − c+ 2)
<

∏k−1
p=1(j − k + p)∏k−1

p=1(m− k − j + 1 + p)
· (m− k + 1)(m− c− j + 1)

(j − k + 1)(m− k − c+ 2)

⇔ (c− j)

(m− k − j + 2)
+

∏c−j
p=1(m− k − c+ 1 + p)∏c−j+1

p=1 (j − 1 + p)
· 1{m even} <∏k−1

p=1(j − k + p)∏k−1
p=1(m− k − j + 1 + p)

· (m− c− j + 1)

(j − k + 1)

⇔(c− j) +

∏c−j+1
p=1 (m− k − c+ 1 + p)∏c−j+1

p=1 (j − 1 + p)
· 1{m even} <∏k−1

p=2(j − k + p)∏k−1
p=2(m− k − j + 1 + p)

· (m− c− j + 1)

⇔(c− j) ·
∏k−1

p=2(m− k − j + 1 + p)∏k−1
p=2(j − k + p)

+

∏c−j+1
p=1 (m− k − c+ 1 + p)∏c−j+1

p=1 (j − 1 + p)
·
∏k−1

p=2(m− k − j + 1 + p)∏k−1
p=2(j − k + p)

· 1{m even}
< (m− c− j + 1)

⇔(c− j) ·
∏k−1

p=2(m− k − j + 1 + p)∏k−1
p=2(j − k + p)

+

∏k+c−j−1
p=1 (m− k − c+ 1 + p)∏k+c−j−1

p=1 (j − k + 1 + p)
· 1{m even} < (m− c− j + 1)

Since j < c = ⌈m2 ⌉, we have m − j + 1 > j and m − c ≥ j, therefore
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∏k−1
p=2(m−k−j+1+p)∏k−1

p=2(j−k+p)
> 1 and ∏k+c−j−1

p=1 (m−k−c+1+p)∏k+c−j−1
p=1 (j−k+1+p)

≥ 1. It follows that (c − j) +

1{m even} < (m− c− j + 1), whereasm− c+ 1 = ⌊m2 ⌋+ 1 = c+ 1{m even}, acontradiction.
Moreover, we show below that many natural single-peaked distributions

favor the median candidates by tending to make them (weak) Condorcet win-
ners. This proposition can be put in perspective with the theorem of Black
[1958], which essentially states that every single-peaked profile admits a weak
Condorcet winner, namely the median candidate(s).
Proposition 13. Every symmetric single-peaked preference distribution makes
the median candidate(s) asymptotic weak Condorcet winner(s). When m is odd,
the unique median candidate is the asymptotic Condorcet winner under any sym-
metric single-peaked distribution π which assigns a positive probability to rank the
median candidate first, i.e., Pπ(c, 1) > 0 for xc ∈ C∗.

Proof. Let us consider a symmetric single-peaked distribution π. Let us com-
pare amedian candidate xc ∈ C∗ and any other candidate xj ∈M \C∗ where,
w.l.o.g., c = ⌈m2 ⌉ and j < c. By single-peakedness, a preference order with a
candidate xℓ as a peak candidate must rank xc before xj if ℓ ≥ c. It follows
that Pπ(xc ≻i xj) ≥

∑m
ℓ=cPπ(ℓ, 1). Recall that∑m

ℓ=1Pπ(ℓ, 1) = 1.
If m is odd then, by symmetry, we have∑c−1

ℓ=1 Pπ(ℓ, 1) =
∑m

ℓ=c+1Pπ(ℓ, 1),and thus Pπ(xc ≻i xj) ≥
∑m

ℓ=cPπ(ℓ, 1) ≥ 1
2 . This inequality is strict if

Pπ(c, 1) > 0.
Ifm is even then, by symmetry, we have∑c

ℓ=1Pπ(ℓ, 1) =
∑m

ℓ=c+1Pπ(ℓ, 1),and thusPπ(xc ≻i xj) ≥
∑m

ℓ=cPπ(ℓ, 1) ≥ 1
2 . It remains to compare xc with theother median candidate xc+1. The arguments are similar: a preference order

with a candidate xℓ as a peak candidate must rank xc before xc+1 if ℓ ≤ c.
Therefore, Pπ(xc ≻i xc+1) ≥

∑c
ℓ=1Pπ(ℓ, 1) =

1
2 .

Beyond the question of electing the Condorcet winner, we will explore
whether certain voting rules tend to elect the median candidate within a spe-
cific single-peaked culture, namely we will investigate the expected winner
under various voting rules given one single-peaked culture assumption.

3.4 . Agreement under Walsh’s Distribution

We first study Walsh’s distribution (Definition 7), which can be seen as im-
partial culture on the single-peaked domain. As such, the probability that a
candidate is ranked at a given rank follows from Lemma 11.
Observation 14. The probability PπW (j, k) that candidate xj is ranked at po-
sition k under Walsh’s distribution, for each j, k ∈ [m], is equal to PπW (j, k) =
Dm(j,k)
2m−1 .
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In Example 12, we observe that under plurality rule, candidate x2 is
strongly favored, as 0.5 of the total probability weight ranks x2 in first place.
The following result aims to show that, in the general case, the median can-
didate is always included in the set of expected winners, regardless of the
election size and the chosen PSR. Specifically, we establish that this distribu-
tion favors themedian candidates since their expected score under every PSR
is at least as large as the one of any other candidate.
Proposition 15. For every PSR F , the median candidates always belong to the
expected winners of F under Walsh’s distribution, i.e., C∗ ⊆ WπW (F).

Proof. When comparing the expected score of a candidate c ∈ C∗ with the
one of any other candidate xj ∈M \C∗, we can restrict our attention, w.l.o.g.,
to the median candidate xc := x⌈m

2
⌉ ∈ C∗ and to any candidate xj such that

j < ⌈m2 ⌉ (by symmetry with respect to the single-peaked axis). The expected
score of a candidate xj , for Walsh’s distribution and a PSR F characterized by
the positional score vectorα, is given byEπW [SF (xj)] =

∑m
k=1PπW (j, k)·αk =∑m

k=1
Dm(j,k)
2m−1 · αk. By the fact that j < c = ⌈m2 ⌉, we havemax{j,m− j + 1} =

m − j + 1 and max{c,m − c + 1} = ⌊m2 ⌋ + 1. And thus, by Observation 10,
Dm(c, k) = 0 for every k > ⌊m2 ⌋ + 1 and Dm(j, k) = 0 for every k > m − j +

1 > ⌊m2 ⌋ + 1. Therefore, we have EπW [SF(xj)] =
∑m−j+1

k=1
Dm(j,k)
2m−1 · αk and

EπW [SF(xc)] =
∑⌊m

2
⌋+1

k=1
Dm(j,k)
2m−1 · αk Let us compare the expected scores of

both candidates:

EπW [SF (xc)]− EπW [SF (xj)]

=

⌊m
2
⌋+1∑

k=1

Dm(c, k)

2m−1
· αk −

m−j+1∑
k=1

Dm(j, k)

2m−1
· αk

=
1

2m−1

γm(j)∑
k=1

(Dm(c, k)−Dm(j, k)) · αk+

m−j+1∑
k=γm(j)+1

(Dm(c, k)−Dm(j, k)) · αk


≥
αγm(j)

2m−1

⌊m
2
⌋+1∑

k=1

Dm(c, k)−
m−j+1∑
k=1

Dm(j, k)


=0

The inequality comes from the fact that, by Lemma 12,Dm(c, k) ≥ Dm(j, k),
for every k ∈ [γm(j)] and Dm(c, k) < Dm(j, k) for every γm(j) < k ≤ m− j +

1, and that α1 ≥ · · · ≥ αγ ≥ · · · ≥ αm. The last equality to 0 is because∑⌊m
2
⌋+1

k=1 Dm(c, k) =
∑m−j+1

k=1 Dm(j, k) = 2m−1.
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Hence, the expected score of a median candidate xc is always at least asgood as the expected score of any other candidate, which completes the proof.

The next result aims to go a step further by providing a characterization of
all PSRs for which the median candidates are the only expected winners. Re-
turning to Example 12, we are not only interested in knowing that b is favored
under plurality, but also in identifying all rules under which b emerges as an
expected winner.

We identify them as the PSRs whose associated positional score vector
α is such that there exists an index ℓ ∈ [⌊m2 ⌋ + 1] with αℓ > αℓ+1. We call
them first-prioritizing PSRs. Note that all k-approval rules for k ≤ ⌊m2 ⌋+ 1 are
first-prioritizing, as well as the Borda rule.
Theorem 16. The median candidates are the unique expected winners of a PSR
F under Walsh’s distribution, i.e.,WπW (F) = C∗, iff F is first-prioritizing.

Proof. Consider first a PSRF characterized by a positional score vectorα such
that there exists an index ℓ ∈ [⌊m2 ⌋+ 1] for which αℓ > αℓ+1. Let us compare,
w.l.o.g., the median candidate xc with c := ⌈m2 ⌉ and a candidate xj such that
1 ≤ j < c where, by definition, xj ∈M \ C∗. By the fact that j < c = ⌈m2 ⌉, wehave max{j,m− j + 1} = m− j + 1 and max{c,m− c+ 1} = ⌊m2 ⌋+ 1. And
thus, by Observation 10, Dm(c, k) = 0 for every k > ⌊m2 ⌋+ 1 and Dm(j, k) = 0

for every k > m − j + 1 > ⌊m2 ⌋ + 1. Let us compare the expected scores of
both candidates:

EπW [SF (xc)]− EπW [SF (xj)]

=

⌊m
2
⌋+1∑

k=1

Dm(c, k)

2m−1
· αk −

m−j+1∑
k=1

Dm(j, k)

2m−1
· αk

=
1

2m−1

γm(j)∑
k=1

(Dm(c, k)−Dm(j, k)) · αk+

m−j+1∑
k=γm(j)+1

(Dm(c, k)−Dm(j, k)) · αk


>
αγm(j)

2m−1

⌊m
2
⌋+1∑

k=1

Dm(c, k)−
m−j+1∑
k=1

Dm(j, k)


=0

The inequality comes from the fact that, by Lemma 12,Dm(c, k) ≥ Dm(j, k),
for every k ∈ [γm(j)] andDm(c, k) < Dm(j, k) for every γm(j) < k ≤ m− j+1,

50



and that α1 ≥ · · · ≥ αγm(j) ≥ · · · ≥ αm. This inequality is strict because thereexists an index ℓ such that 1 ≤ ℓ ≤ ⌊m2 ⌋+ 1 < m− j + 1 for which αℓ > αℓ+1.Hence, the expected score of a median candidate is always greater than the
expected score of any other candidate xj , and thus the median candidates
are the only expected winners.

Consider now a PSR F characterized by a positional score vector α where
α1 = · · · = αℓ for a given ℓ > ⌊m2 ⌋ + 1. Let us compare, w.l.o.g., the median
candidate xc with c := ⌈m2 ⌉ and the candidate xc−1 (which must exist since
m > 2) where, by definition, xc−1 ∈M \ C∗. By the fact that c− 1 < c = ⌈m2 ⌉,we have max{c,m − c + 1} = ⌊m2 ⌋ + 1 and max{c − 1,m − (c − 1) + 1} =

⌊m2 ⌋ + 2. And thus, by Observation 10, Dm(c, k) = 0 for every k > ⌊m2 ⌋ + 1

and Dm(c − 1, k) = 0 for every k > ⌊m2 ⌋ + 2. Note that, by assumption, we
have ℓ > ⌊m2 ⌋+ 1, and thus α1 = · · · = α⌊m

2
⌋+1 = α⌊m

2
⌋+2. Let us compare the

expected scores of both candidates:

EπW [SF (xc)]− EπW [SF (xc−1))]

=

⌊m
2
⌋+1∑

k=1

Dm(c, k)

2m−1
· αk −

⌊m
2
⌋+2∑

k=1

Dm(c− 1, k)

2m−1
· αk

=
α1

2m−1

⌊m
2
⌋+1∑

k=1

Dm(c, k)−
⌊m

2
⌋+2∑

k=1

Dm(c− 1, k)


=0

Hence, the expected scores of xc and xc−1 are equal, whereas xc−1 is nota median candidate. Therefore, the median candidates are not the only ex-
pected winners.

By Proposition 13 and Theorem 16, the first-prioritizing PSRs tend to elect
the (weak) Condorcet winner(s) under Walsh’s distribution. It follows that
asymptotically, under Walsh’s distribution, all first-prioritizing PSRs and all
Condorcet-consistent rules tend to agree on the same outcome, namely the
median candidates.
Corollary 17. UnderWalsh’s distribution, all first-prioritizing PSRs and Condorcet-
consistent rules asymptotically agree to elect the median candidates.

We show a good lower bound for the convergence to the same outcome
for a subset of first-prioritizing PSRs, which include the rules k-approval and
Borda rule.
Proposition 18. For all k-approval voting rules that are first-prioritizing and the
Borda rule, under Walsh’s distribution, the probability of their agreement for elect-
ing one candidate from C∗ is lower bounded by Lπ(F1) where F1 refers to the
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plurality rule. Thus, the speed of convergence for the plurality rule constitutes a
lower bound.

Proof. LetA be the set of all k-approval rules that are first-prioritizing. Thanks
to Corollary 9, it is enough to look at minF∈A{Lπ(F)}. Using the expres-
sion of L in Theorem 8, we can greatly simplify our question to the find-
ing of F such that maxx∈M EπW [SF(x)] − EπW [SF(y)] is minimal, where
maxx∈M EπW [SF(x)] = EπW [SF(c)] if c ∈ C∗ and y ∈ M \ C∗. However,
maxx∈M EπW [SF (x)]−EπW [SF (y)] =

∑⌊m
2
⌋+1

k=1
Dm(c,k)
2m−1 ·αk−

∑m−j+1
k=1

Dm(y,k)
2m−1 ·αk.

This can again be reduced to the following minimization:∑⌊m
2
⌋+1

k=1 Dm(c, k)−∑m−j+1
k=1 Dm(y, k). Thanks to Lemma 12 and the fact that∑⌊m

2
⌋+1

k=1 Dm(c, k) =

2m−1, we can conclude that the plurality rule minimizes this quantity. It re-
mains to show that the Borda rule always reaches a higher bound L. In fact,
it is enough to show thatmaxx∈M EπW [SF (x)]− EπW [SF (y)] is at leastm− 1

times bigger than for plurality since we will divide by (maxj αj − minj αj) =

m − 1. Nevertheless, the Borda score for the candidate ranked first ism − 1,
so that this quantity has to be larger for Borda. It is even strictly larger thanks
to the next Borda scores.

As an illustration, we apply Proposition 18 form = 5.
Example 18. Let us apply Theorem 18 for m = 5. We have C∗ = {x3} and take
F = F1, Eπ[S

F(x3)] =
3
8 , Eπ[S

F(x2)] =
1
4 and µF

π (x2) = 5
16 . We notice that

these values maximize the maximum in the right hand side in Theorem 8. Finally,
we have P(F1(≻) = C∗) ⩾ 1 − 2e−

n
128 . Thus, this constitutes a lower bound

for all k-approval voting rules that are first-prioritizing and Borda. For instance,
when n = 200, the lower bound is already at 0.58, for n = 400, it is 0.91, and
for n = 600, it reaches 0.98. This shows that these first-prioritizing voting rules
quickly converge in agreement as the number of voters increases under Walsh’s
distribution.

3.5 . Agreement under Conitzer’s Distribution

We now analyze Conitzer’s distribution (Definition 8), which considers a
uniformdistribution not on thewhole single-peaked domain, asWalsh’s distri-
bution, but on the peak candidates of the single-peaked orders. In Conitzer’s
model, one first selects a peak candidate uniformly at random, then com-
pletes the preference by iteratively ranking one of the closest remaining can-
didates along the single-peaked axis. It follows that the probability for a given
candidate to be ranked at a given rank is a bit less direct, as already stated
by Boehmer et al. [2022].
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Lemma 19 (Boehmer et al. [2022]). The probability PπC (j, k) that candidate xj
is ranked at position k under Conitzer’s distribution, for each j, k ∈ [m], is equal
to PπC (j, k) = Q(j, k) +Q(m− j + 1, k) where

Q(j, k) =


1
2m if k < j
k
2m if k = j
0 otherwise

.

In Example 13, we observe that, under the plurality rule, the probability
of electing any candidate is equal. However, depending on the voting rule
applied, some candidates may still be favored. The following result aims to
establish the expectedwinner according to certain specific rules. We first char-
acterize the expected winners of all k-approval rules.
Proposition 20. The expected winners of the k-approval rule F under Conitzer’s
distribution are:

WπC (F) =


M if k = 1
{xk, xm−k+1} if 1 < k ≤ ⌊m2 ⌋+ 1
{xj ∈M : max{j,m− j + 1} ≤ k} otherwise

.

Proof. Since Conitzer’s distribution is symmetric, we restrict our analysis,
w.l.o.g., to the case of a candidate xj where j ∈ [⌈m2 ⌉]. By Lemma 19, we
have the following expected score for xj :

EπC [S
F (xj)] =

k∑
ℓ=1

PπC (j, k)

=

min{k,j}∑
ℓ=1

Q(j, ℓ) +

min{k,m−j+1}∑
ℓ=1

Q(m− j + 1, ℓ)

=


2k
2m if k < j
3k−1
2m + k

2m · 1{j=⌈m
2
⌉} if k = j

2j−1+k
2m if j < k < m− j + 1

1 if k ≥ m− j + 1

If k ≥ ⌊m2 ⌋+1, then there exist candidates xj such that k ≥ m− j+1, and
all of them get the maximal expected score of 1, thus they are all expected
winners. If k = 1, then EπC [S

F(x1)] =
3k−1
2m = 1

m and EπC [S
F(xj)] =

2k
2m = 1

mfor all other candidates xj . It follows that all candidates are expected winners.Finally, if 1 < k ≤ ⌊m2 ⌋+1, then the expectedwinners are those corresponding
to the case where k = j because 3k−1 > 2kwhen k > 1 and 2j−1+k < 3k−1
when j < k.
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The next result aims to go a step further by providing a characterization
of all PSRs for which the median candidates are the only expected winners.
Theorem 21. The median candidates are the unique expected winners of a PSR
F under Conitzer’s distribution iff the positional score vector α associated with F
satisfies the following inequality, for every 1 ≤ j < ⌈m2 ⌉:

⌈m
2
⌉−1∑

ℓ=j+1

αℓ + β(m) + αm
2
1{m even} >

m−j∑
ℓ=⌈m

2
⌉+1

αℓ + δ(j,m)

where β(m) := (⌈m2 ⌉ − 1)α⌈m
2
⌉ + (⌊m2 ⌋+ 1)α⌊m

2
⌋+1 and δ(j,m) := (j − 1)αj +

(m− j + 1)αm−j+1.
A sufficient condition is β(m) > δ(j,m), for every j < ⌈m2 ⌉.

Proof. Consider a PSR F characterized by a positional score vector α. Let us
compare a median candidate xc ∈ C∗ and another candidate xj ∈ M \ C∗

where, w.l.o.g., j < c := ⌈m2 ⌉. By Lemma 19, the expected score of candidate
xc is given by: EπC [S

F(xc)] =
1
m

∑⌈m
2
⌉−1

ℓ=1 αℓ +
⌈m

2
⌉

2m · α⌈m
2
⌉ +

⌊m
2
⌋+1

2m · α⌊m
2
⌋+1 +

1
2m · αm

2
· 1{m even}.Moreover, the expected score of candidate xj is given by: EπC [S

F(xj)] =
1
m

∑j−1
ℓ=1 αℓ +

j+1
2m αj +

1
2m

∑m−j
ℓ=j+1 αℓ +

m−j+1
2m αm−j+1.It follows that the median candidates are unique expected winners iff, for

every j < c, we have:
EπC [S

F (xc)]− EπC [S
F (xj)] > 0

⇔

1

m

⌈m
2
⌉−1∑

ℓ=1

αℓ +
⌈m2 ⌉
2m

α⌈m
2
⌉ +
⌊m2 ⌋+ 1

2m
α⌊m

2
⌋+1 +

1

2m
αm

2
1{m even}

− 1

m

j−1∑
ℓ=1

αℓ −
j + 1

2m
αj −

1

2m

m−j∑
ℓ=j+1

αℓ −
m− j + 1

2m
αm−j+1 > 0

⇔

1

2m

⌈m
2
⌉−1∑

ℓ=j+1

αℓ +
⌈m2 ⌉ − 1

2m
α⌈m

2
⌉ +
⌊m2 ⌋+ 1

2m
α⌊m

2
⌋+1 +

1

2m
αm

2
1{m even}

>
j − 1

2m
αj +

1

2m

m−j∑
ℓ=⌈m

2
⌉+1

αℓ +
m− j + 1

2m
αm−j+1

⇔
⌈m

2
⌉−1∑

ℓ=j+1

αℓ + (⌈m
2
⌉ − 1)α⌈m

2
⌉ + (⌊m

2
⌋+ 1)α⌊m

2
⌋+1 + αm

2
1{m even}
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> (j − 1)αj +

m−j∑
ℓ=⌈m

2
⌉+1

αℓ + (m− j + 1)αm−j+1

We always have∑⌈m
2
⌉−1

ℓ=j+1 αℓ + αm
2
1{m even} ≥

∑m−j
ℓ=⌈m

2
⌉+1 αℓ. It follows that

a sufficient condition to getEπC [S
F (xc)]−EπC [S

F (xj)] > 0 is (⌈m2 ⌉−1)α⌈m
2
⌉+

(⌊m2 ⌋+1)α⌊m
2
⌋+1 > (j − 1)αj + (m− j +1)αm−j+1, for every 1 ≤ j < ⌈m2 ⌉.

We observe that the Borda rule satisfies the sufficient condition of Theo-
rem 21, as well as ⌈m2 ⌉-approval (and (m2 + 1)-approval if m is even), proving
that these rules eventually elect the median candidates (as already observed
in Proposition 20 for the approval rules). While Theorem 21 is not immediately
interpretable, the following provides some intuition to better understand its
implications. The underlying intuition is that the characterization corresponds
to PSRs associated with a score vector (α1, · · · , αm) such that the first half of
the scores is strictly greater than the second half but, for more than 4 can-
didates, not with too big a gap. More precisely, for m=3 and m=4, we must
have α2 > α3 and α2 > α3 or α3 > α4, respectively, and for m=5, we must
have α2 > α3 or α3 > α4 and a2 < 5 · α3 − 4 · α4. Note that, in addition to
Borda and ⌈m/2⌉-approval, this also includes, e.g., all PSRs such that αi = 0 if
i > ⌊m/2⌋+ 1 and α2 < 2 · α⌊m/2⌋+1.

A visual interpretation of Theorem 21: We now propose a visual in-
terpretation of our result through the following example.

Example 19. Consider the casem = 4. The space of positional scoring rules, re-
normalized so that the total score sums to 1, forms a 3-dimensional simplex. We
apply Theorem 21 to identify the scoring rules that satisfy the necessary and suf-
ficient conditions for agreement under Conitzer’s distribution. The scoring rules
satisfying these conditions form a region where α1 is implicitly determined by the
simplex constraint, but nothing else. This region, shown in blue in our figure, in-
cludes all rules that ensure agreement under Conitzer’s distribution. For instance,
Borda’s rule, which corresponds to the normalized point (12 ,

1
3 ,

1
6 , 0), lies in this

region. Another example is the rule (2, 1, 1, 0), which normalizes to (12 ,
1
4 ,

1
4 , 0),

also within the blue region. This illustrates that, with four candidates, many scor-
ing rules satisfy the agreement condition. As the number of candidates increases,
however, additional constraints emerge, and the region becomes a polytope of
higher dimension.
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Figure 3.1: Agreement region under Conitzer’s distribution (m = 4)
Here is a corollary to formalize the previous intuition about Theorem 21.

By Proposition 13 and Corollary 22, the Borda rule, ⌈m2 ⌉-approval, as well as allrules identified in Theorem 21 tend to elect the (weak) Condorcet winner(s).
Corollary 22. The median candidates are the unique expected winners of the
Borda rule and the ⌈m2 ⌉-approval rule (as well as (

m
2 + 1)-approval if m is even)

under Conitzer’s distribution.

Proof. We simply show that these rules satisfy the sufficient condition of The-
orem 21.

The Borda rule is characterized by the positional score vector α = (m −
1, . . . , 0), therefore we have αj = m − j, for every j ∈ [m]. Thus, for every
1 ≤ j < ⌈m2 ⌉, we have:

(⌈m
2
⌉ − 1)α⌈m

2
⌉ + (⌊m

2
⌋+ 1)α⌊m

2
⌋+1

− (j − 1)αj − (m− j + 1)αm−j+1

=(⌈m
2
⌉ − 1)⌊m

2
⌋+ (⌊m

2
⌋+ 1)(⌈m

2
⌉ − 1)

− (j − 1)(m− j)− (m− j + 1)(j − 1)

=(⌈m
2
⌉ − 1)(2⌊m

2
⌋+ 1)− (j − 1)(2m− 2j + 1)

The previous quantity is decreasing with respect to j, therefore it takes its
minimum value for j = ⌈m2 ⌉ − 1, where this quantity is equal to:
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(⌈m
2
⌉ − 1)(2⌊m

2
⌋+ 1)− (⌈m

2
⌉ − 2)(2m− 2⌈m

2
⌉+ 3)

=(⌈m
2
⌉ − 2)(2⌊m

2
⌋+ 1− 2m+ 2⌈m

2
⌉ − 3) + (2⌊m

2
⌋+ 1)

=(⌈m
2
⌉ − 2)(−2) + (2⌊m

2
⌋+ 1)

=− 2⌈m
2
⌉+ 4 + 2⌊m

2
⌋+ 1

=− 1{m odd} + 4− 1{m odd} + 1

=− 2 · 1{m odd} + 5

>0

Hence, the Borda rule satisfies the sufficient condition of Theorem 21.
Under the ⌈m2 ⌉-approval rule, αj = 1 for all 1 ≤ j ≤ ⌈m2 ⌉ and αj = 0 for all

j > ⌈m2 ⌉. Therefore, for every 1 ≤ j < ⌈m2 ⌉, we have (⌈m2 ⌉ − 1)α⌈m
2
⌉ + (⌊m2 ⌋+

1)α⌊m
2
⌋+1 − (j − 1)αj − (m− j + 1)αm−j+1 = ⌈m2 ⌉ − 1 + (⌊m2 ⌋+ 1)1{m odd} −

(j − 1) > 0, because j < ⌈m2 ⌉. Hence, ⌈m2 ⌉-approval satisfies the sufficient
condition of Theorem 21. If m is even, then (m2 + 1)-approval also satisfies
the sufficient condition of Theorem 21 because α⌊m

2
⌋+1 = 1 and thus we have

⌈m2 ⌉ − 1 + ⌊m2 ⌋+ 1− (j − 1) > 0.
Corollary 23. Under Conitzer’s distribution, the Borda rule, ⌈m2 ⌉-approval, and
Condorcet-consistent rules asymptotically agree to elect the median candidates.

As an illustration, when we apply Theorem 8 with Borda form = 5.
Example 20. Let us apply Theorem 18 for m = 5. We follow the same type of
computation as in Example 18 and get: PπC (F(P) = C∗) ⩾ 1 − 2e−

9n
3200 . For

instance, when n = 500, the lower bound to elect the median candidate with
Borda is already at 0.50, for n = 1000, it is 0.87, and for n = 2000, it reaches 0.99.

We have observed a higher level of agreement among voting rules under
Conitzer’s distribution. This distribution has the notable property of assigning
equal probability to each candidate being ranked first. In this sense, it can be
interpreted as a way to restore balance among candidates with respect to the
plurality rule. Building on this intuition, we now seek to extend this idea to
other voting rules by introducing the notion of unbiased distribution.

3.6 . Unbiased Distributions

In this section, we aim to identify single-peaked distributions which do not
favor any candidate by design, with respect to a given PSR. This led us to the
following definition.
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Definition 11 (Unbiased distribution). A preference distribution π : Πm → [0, 1]

is said to be unbiased with respect to a given PSR F if all candidates are expected
winners of F under π, i.e., Eπ[S

F (x)] = Eπ[S
F (y)], for every x, y ∈M .

Note that the existence of an unbiased distribution with respect to a given
PSR can be decided in polynomial time by solving a system of linear equations
with real variables. We first characterize the single-peaked distributionswhich
are unbiased with respect to k-approval rules.
Theorem 24. There exists an unbiased single-peaked distribution with respect to
the k-approval rule iff k dividesm.

Proof. Let us assume that k dividesm, i.e., there exists an integer q such that
m = k · q. Let us partition the set of candidatesM in q groups of size k as fol-
lows: {x1, x2, . . . , xk}, {xk+1, . . . , x2k}, . . . , {x(q−1)k+1, . . . , xqk} where Xj de-notes the group {x(j−1)k+1, . . . , xjk} for each j ∈ [q] and M =

⊔
j∈[q]Xj . Foreach group Xj , let us denote by Pj the set of single-peaked preference or-

ders where the k candidates in Xj are ranked among the first k candidates,
i.e., Pj : {≻i∈ Πm

> : r≻i(x) ≤ k, ∀x ∈ Xj}. Observe that Pj is necessarilynon-empty for every j ∈ [q] because, e.g., the following single-peaked or-
der ≻i belongs to Pj : x(j−1)k+1 ≻i · · · ≻i xjk ≻i x(j−1)k ≻i · · · ≻i x1 ≻i

xjk+1 ≻i · · · ≻i xm. We consider the single-peaked preference distribution
π : Πm

> → [0, 1] such that ∑≻i∈Pj
π(≻i) = k

m = 1
q for each j ∈ [q], and

π(≻i) = 0 for all≻i∈ Πm
> \
⋃

j∈[q] Pj . We can check that π is a valid distribution
because∑≻i∈Πm

>
π(≻i) =

∑
j∈[q]

∑
≻i∈Pj

π(≻i) = q · k
m = 1.

In the k-approval rule, each candidate gains one point per preference or-
der where it is ranked among the first k candidates. Under the described pref-
erence distribution π, it occurs for candidate xℓ with a positive probability onlyin preference orders in Pj with the unique j such that xℓ ∈ Xj . It follows thatthe expected score of each candidate xℓ is equal to∑≻i∈Pj :xℓ∈Xj

π(≻i)·1 = k
m .Let us now assume that k does not dividem. Let us denote by q and r the

unique integers such thatm = k ·q+rwith 0 < r < k. Suppose, for the sake of
contradiction, that there exists a single-peaked distribution π unbiased with
respect to the k-approval rule. We will prove by induction that a preference
order ranking candidate x(j−1)k+ℓ among the first k candidates, for ℓ ∈ [k],
can be assigned a positive probability in π only if all the k candidates x(j−1)k+1,. . . , xjk are ranked among the first k candidates in this preference order, for
every j ∈ [q]. For the base case, candidate x1 gets one point under the k-
approval rule iff it is ranked among the first k candidates. However, if x1 isranked among the first k candidates then, by single-peakedness, it must also
be the case of all candidates xj for 1 < j ≤ k. Since the expected score of
x1 must be the same as the one of all candidates xj for 1 < j ≤ k, then no
positive probability can be assigned to other preference orders where some
candidate xj , for 1 < j ≤ k, is ranked among the first k candidates. We now
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assume that a preference order ranking candidate x(j′−1)k+ℓ among the first
k candidates, for ℓ ∈ [k], can be assigned a positive probability in π only if all
the k candidates x(j′−1)k+1, . . . , xj′k are ranked among the first k candidates
in this preference order, for every 1 ≤ j′ < j, for a given j ∈ [q]. It follows that
candidate x(j−1)q+1 cannot be ranked within the top k of a preference order
with positive probability where some candidate xℓ′ , for ℓ′ < (j−1)q+1, is also
ranked within the top k. Therefore, if x(j−1)q+1 is ranked within the top k of a
preference order with positive probability, then it must also be the case of all
the candidates x(j−1)k+2, . . . , xjk. Since the expected score of x(j−1)q+1 must
be the same as the one of all candidates x(j−1)k+2, . . . , xjk, then no positive
probability can be assigned to other preference orderswhere some candidate
among x(j−1)k+2, . . . , xjk, is ranked among the first k candidates, proving the
claim.

Now, let us analyze the case of candidate xm. If xm is ranked among the
first k candidates then, by single-peakedness, itmust also be the case of all the
k−1 candidatesxj , form−k+1 ≤ j < m. Since k does not dividem, there exist
integers j ∈ [q] and ℓ ∈ [k] such thatm−k+1 = (j−1)k+ℓ and thus candidate
xm−k+1 is approved in single-peaked orders approving candidates (j−1)k+ℓ′,
for ℓ′ ∈ [k], and in the disjoint ones approving candidate xm, therefore its
expected score would be equal to the sum of the expected score of xm and
the expected score of xm−k, contradicting the fact that π is unbiased.

From Theorem 24, no single-peaked distribution can be unbiased with
respect to k-approval, for any k > m/2 when m > 2, which includes the
veto rule (i.e., (m − 1)-approval). Alternatively, there exists a family of single-
peaked distributions which are unbiased with respect to the plurality rule (i.e.,
1-approval), including Conitzer’s distribution. The description of the family
of distributions satisfying this property is given in the proof of the theorem:
for each candidate x, the distribution must assign a global sum of probabili-
ties of 1

m for all single-peaked preference orders ranking x first. In addition,
Conitzer’s distribution is unbiased only with respect to plurality, leading to the
following statement.
Proposition 25. Conitzer’s distribution is unbiased with respect to a positional
scoring rule F iff F is the plurality rule.

Proof. By Proposition 20, all candidates are expected winners of the 1-
approval rule (i.e., plurality) under Conitzer’s distribution. Therefore,
Conitzer’s distribution is unbiased with respect to plurality.

Suppose that Conitzer’s distribution is unbiased with respect to some po-
sitional scoring ruleF defined by the positional score vector α = (α1, . . . , αm)

such that, by definition, α1 ≥ α2 ≥ · · · ≥ αm and α1 > αm. It follows that allcandidates are expected winners of F , i.e., EπC [S
F(xi)] = EπC [S

F(xj)], for
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every i, j ∈ [m]. By Lemma 19, the expected score of a candidate xj is thefollowing:
EπC [S

F (xj)] =

m∑
k=1

PπC (j, k) · αk

=

m∑
k=1

(Q(j, k) +Q(m− j + 1, k)) · αk

=

j−1∑
k=1

1

2m
· αk +

j

2m
· αj+

m−j∑
k=1

1

2m
· αk +

m− j + 1

2m
· αm−j+1

By considering, in particular, candidates x1 and x2, we have EπC [S
F(x1)] =

1
2mα1+

1
2m

∑m−1
k=1 αk+

1
2αm andEπC [S

F (x2)] =
1
2mα1+

2
2m ·α2+

1
2m

∑m−2
k=1 αk+

m−1
2m ·αm−1. For candidates x1 and x2 to be both expected winners, they needto have the same expected score. It follows that:

EπC [S
F (x1)] = EπC [S

F (x2)]⇔

1

2m
α1 +

1

2m

m−1∑
k=1

αk +
1

2
αm =

1

2m
α1 +

2

2m
· α2+

1

2m

m−2∑
k=1

αk +
m− 1

2m
· αm−1 ⇔

1

2m

m−1∑
k=1

αk +
1

2
αm =

2

2m
· α2 +

1

2m

m−2∑
k=1

αk +
m− 1

2m
· αm−1 ⇔

1

2m
αm−1 +

1

2
αm =

2

2m
· α2 +

m− 1

2m
· αm−1 ⇔

1

2
αm =

2

2m
· α2 +

m− 2

2m
· αm−1 ⇔

αm =
2

m
· α2 +

m− 2

m
· αm−1

Because α2 ≥ · · · ≥ αm−1 ≥ αm, the fact that αm = 2
m · α2 +

m−2
m · αm−1implies α2 = · · · = αm−1 = αm. It follows that α1 > α2 = · · · = αm−1 = αm,and thus F corresponds to the plurality rule.

In contrast, we prove that Walsh’s distribution can never be unbiased be-
cause, no matter the chosen positional score vector, the expected score of a
median candidate will always be strictly greater than the one of an extreme
candidate in the single-peaked axis.
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Proposition 26. No PSR can make Walsh’s distribution unbiased.

Proof. Suppose, for the sake of contradiction, that Walsh’s distribution πW is
unbiased with respect to a given PSR F characterized by the positional score
vector α = (α1, . . . , αm). We can assume, w.l.o.g., that α1 = 1, αm = 0,
and αy ∈ [0, 1] for every 1 < j < m. By definition, for every candidates x

and y, we have EπW [SF(x)] = EπW [SF(y)], i.e., ∑≻i∈Πm πW (≻i) · αr≻i (x)
=∑

≻i∈Πm πW (≻i) · αr≻i (y)
, and thus∑≻i∈Πm

1
2m−1 · αr≻i (x)

=
∑

≻i∈Πm
1

2m−1 ·
αr≻i (y)

which implies∑≻i∈Πm αr≻i (x)
=
∑

≻i∈Πm αr≻i (y)
.

Consider the extreme candidate x1 and the median candidate xc := x⌈m
2
⌉.We must have∑≻i∈Πm αr≻i (x1) =

∑
≻i∈Πm αr≻i (c)

. By Observation 10, candi-
date c can never be ranked at a position worse than γ := ⌊m2 ⌋ + 1, and thus
we have∑≻i∈Πm αr≻i (c)

=
∑m

k=1 Dm(xc, k) · αk =
∑γ

k=1 Dm(xc, k) · αk where∑γ
k=1 Dm(xc, k) = 2m−1. Since x1 is an extreme candidate, it is ranked last

in half of the single-peaked orders. Therefore, by the fact that αm = 0, we
have∑≻i∈Πm αr≻i (x1) =

∑m
k=1 Dm(x1, k) · αk =

∑m−1
k=1 Dm(x1, k) · αk where∑m−1

k=1 Dm(x1, k) · αk = 2m−2. Let us now analyze the difference between∑
≻i∈Πm αr≻i (xc) and∑≻i∈Πm αr≻i (x1):

∑
≻i∈Πm

αr≻i (xc) −
∑

≻i∈Πm

αr≻i (x1)

=

γ∑
k=1

Dm(xc, k) · αk −
m−1∑
k=1

Dm(x1, k) · αk

=

γ∑
k=1

(Dm(xc, k)−Dm(x1, k)) · αk −
m−1∑

k=γ+1

Dm(x1, k) · αk

However, by Lemma 11, we have Dm(xc, k) = 2k−2(
(
m−k
c−1

)
+
(
m−k
c−k

)
) ≥ 2k−2

for k ∈ {2, . . . , γ}, while Dm(x1, k) = 2k−2(
(
m−k
0

)
+
(
m−k
1−k

)
) = 2k−2 for k ∈

{2, . . . , γ}, and Dm(xc, 1) =
(
m−1
c−1

) and Dm(x1, 1) = 1. Therefore, Dm(xc, k)−
Dm(x1, k) ≥ 0 for every k ∈ [γ].
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Since α1 ≥ α2 ≥ . . . αm, it follows that:
γ∑

k=1

(Dm(xc, k)−Dm(x1, k)) · αk −
m−1∑

k=γ+1

Dm(x1, k) · αk

≥
γ∑

k=1

(Dm(xc, k)−Dm(x1, k)) · αγ −
m−1∑

k=γ+1

Dm(x1, k) · αk

=(2m−1 − (1 +

⌊m/2⌋+1∑
k=2

2k−2) · αγ −
m−1∑

k=γ+1

Dm(x1, k) · αk

=(2m−1 − 2⌊m/2⌋) · αγ −
m−1∑

k=γ+1

Dm(x1, k) · αk

≥(2m−1 − 2⌊m/2⌋) · αγ −
m−1∑

k=γ+1

Dm(x1, k) · αγ

=(2m−1 − 2⌊m/2⌋) · αγ − (2m−2 − 2⌊m/2⌋) · αγ

>0

Hence, we always have ∑≻i∈Πm αr≻i (xc) >
∑

≻i∈Πm αr≻i (x1), no matter
the chosen positional score vector, a contradiction.

We now turn our attention to the Borda rule and aim to determine under
which distribution it remains unbiased. In doing so, we encounter a highly
degenerate distribution. Specifically, we consider a distribution that assigns
equal positive probability only to the two extreme rankings within the single-
peaked domain.
Definition 12 (Polarized distribution). The polarized single-peaked distribution
π : Πm

> → [0, 1] is defined as:

π(≻i) =

{
1
2 if x1 ≻i · · · ≻i xm or xm ≻i · · · ≻i x1
0 otherwise .

Although it is degenerate, the polarized distribution is nevertheless sym-
metric and is the only single-peaked distribution which is unbiased with re-
spect to the Borda rule.
Theorem 27. A single-peaked distribution is unbiased with respect to the Borda
rule iff it is the polarized distribution.

Proof. TheBorda rule is characterized by, e.g., the positional score vector (m−
1,m− 2, . . . , 1, 0). Under the polarized distribution, each candidate xj can beranked either at position j or at positionm− j + 1, with equal probability. It
follows that the expected score of each candidate xj is equal to:

1

2
(m− j) +

1

2
(j − 1) =

1

2
(m− 1)
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Therefore, the polarized distribution is unbiased with respect to the Borda
rule.

Let us now prove that no other distribution is unbiased with respect to the
Borda rule. Suppose that there exists a single-peaked distribution π which is
unbiased with respect to the Borda rule. Observe that, globally, all the Borda
scores that have been distributed to the candidates are equal to:∑

≻i∈Πm
>

π(≻i) ·
∑
x∈M

(m− r≻i(x)) =
∑

≻i∈Πm
>

π(≻i) ·
m(m− 1)

2
=

m(m− 1)

2

Therefore, since allm candidates must have the same expected score, it must
be equal to m−1

2 . Let us denote by Πm
> (1) and Πm

> (m) the set of single-peaked
orders where candidate x1 and xm are ranked last, respectively. We have
Πm

> = Πm
> (1) ⊔ Πm

> (m). Candidates x1 and xm get zero points in Πm
> (1) and

Πm
> (m), respectively. Since the maximum number of points to get is (m −

1), for x1 and xm to get an expected score of m−1
2 , the distribution should

be balanced between Πm
> (1) and Πm

> (m), i.e., we must have∑≻i∈Πm
> (1) π(≻i

) =
∑

≻i∈Πm
> (m) π(≻i) = 1

2 . Moreover, for x1 and xm to reach an expected
score of exactly m−1

2 on only half of the single-peaked orders, they must get
m − 1 points, i.e., be ranked at the first position, in the orders with positive
probability in their half. Since both x1 and xm are ranked first in exactly one
single-peaked order, i.e., in the extreme orders x1 ≻i x2 ≻i · · · ≻i xm and
xm ≻i · · · ≻i x2 ≻i x1, respectively, π must assign positive equal probability
to exactly these two orders, leading to π being the polarized distribution.

We have addressed the question of how to sample single-peaked prefer-
ence in a manner that is unbiased with respect to the candidates. We now
continue our work with the question of agreement among voting rules when
preferences are drawn from other distributions.

3.7 . Agreement under Other Structured Distributions

Finally, we explore structured preference distributions other than single-
peaked ones in order to determine whether similar results can be reached.
In particular, we study unimodal distributions, including the famous Mallows’
distributions [Mallows, 1957], introduced in voting theory by Goldsmith et al.
[2014] and recall in Definition 9, and Pólya-Eggenberger urn [Eggenberger and
Pólya, 1923] introduced in voting theory by Berg [1985] and recall in Defini-
tion 10.

3.7.1 . Unimodal Distributions
The frequency of a preference order ≻i∈ Πm in a preference profile

P ∈ (Πm)n is denoted by f(≻i,P). A preference profile P ∈ (Πm)n is uni-
modal [Chatterjee and Storcken, 2020] if there exists a mode ≻∗∈ Πm, i.e.,

63



a reference preference order, such that f(≻i,P) > f(≻j ,P) iff distKT (≻∗

,≻i) < distKT (≻∗,≻j), for every pair of preference orders ≻i,≻j∈ P . Pos-
itively discriminating rules [Chatterjee and Storcken, 2020] are social welfare
functions which always return the mode as the outcome of the election. Both
PSRs and Condorcet-consistent rules are positively discriminating.

We adapt the definition of unimodal profile to distributions. A preference
distribution π : Πm → [0, 1] is said to be unimodal if there exists a mode ≻∗∈
Πm such that π(≻i) > π(≻′

i) iff distKT (≻∗,≻i) < distKT (≻∗,≻′
i), for everypair of preference orders≻i,≻′

i∈ Πm. We consider independent and identical
voter preference drawings. By using the Glivenko-Cantelli theorem [Cantelli,
1935], we deduce that any unimodal distributionwill asymptotically generate a
unimodal profile, where PSRs and Condorcet-consistent rules agree to select
the winner of the mode.
Corollary 28. Under unimodal distributions, all PSRs and Condorcet-consistent
rules asymptotically agree to elect the first-ranked candidate of the mode.

We go further and give a bound for the speed of convergence toward
agreement in terms of election size. Precisely, we would like to know if this
convergence can happen in practice or if this is just for theoretical purpose.
We first recall the Dvoretzky-Kiefer-Wolfowitz’s (DKW) lemma [Dvoretzky et al.,
1956].
Lemma 29 (DKW inequality). LetX1, ..., Xn be some independent and identical
random variables distributed with a law F . Let Fn(x, ω) = 1

n

∑n
i=1 1{Xi(ω)≤x}

then P(supx∈R |Fn(x)− F (x)| > ε) ≤ 2e−2nε2 , ∀ε > 0.

Proposition 30. For a unimodal preference distribution π, the probability that
all PSRs and Condorcet-consistent rules agree is lower bounded by Bπ := 1 − 2 ·
exp(−2nε2), for ε := min≻i,≻j∈Πm |π(≻i)− π(≻j)|.

Proof. We remark that for ε sufficiently small, i.e., ε = min{≻i,≻′
i} |Pπ(≻i

) − Pπ(≻′
i)|, we have {||Fn(., ω) − F ||∞ ≤ ε} = {Fn is unimodal}. Applying

Lemma 29 on the contrary event and using theorem 4.1 from Chatterjee and
Storcken [2020], we get that the described voting rules agree with probability
at least 1− 2e−2nε2 .

A typical example of unimodal distributions are Mallows’ distributions
when ϕ < 1.

We give below an example of the speed of convergence under Mallows’
distributions.
Example 21. Under a Mallows’ distribution πϕ,σ , we get ε = ϕk · (1 − ϕ) with
k := max≻ distKT (σ,≻i) and thus the bound for agreement is Bπϕ,σ = 1 − 2 ·
exp(−2n(ϕ

k·(1−ϕ)
Z )2).
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If we consider an election with three candidates, for instance when ϕ = 0.1

then we need n = 2, 000, 000, (then k = 3) to reach Bπϕ,σ = 0.92. If ϕ = 0.9

then n = 400 is enough to get Bπϕ,σ = 0.97. When more weight is given to orders
close to the mode, voting rules agree faster than when the Mallows’ distribution
gets closer to impartial culture (i.e., ϕ = 1). This is quite understandable, as voting
rules tend to agree more quickly when the culture is concentrated around a single
preference. Conversely, when preferences are more dispersed, convergence takes
longer to occur. This is also coherent with the impartial culture (i.e., ϕ = 1) which
have a positive probability of disagreement.

3.7.2 . Pólya-Eggenberger Urn
This subsection is dedicated to another structured distribution, namely

the Pólya-Eggenberger urn model. The idea is to generate the preference
profile using a reinforcement mechanism: we start with an urn containing
each possible preference order with equal probability, and after each draw,
the selected preference is returned to the urn along with R additional copies
of itself. The following result generalizes the asymptotic result from Gehrlein
[2002] for three candidates under impartial anonymous culture (whenR = 1).

For the purpose of the next proposition we need to introduce Dirichlet law
which will help us describe the asymptotic limit of the law of the score under
Pólya-Eggenberger Urn drawings.
Definition 13 (Dirichlet law). Let d ≥ 2 be an integer. Let Σ be the (d − 1)-
dimensional simplex

Σ =

{
(x1, . . . , xd) ∈ [0, 1]d |

d∑
k=1

xk = 1

}
then

f(x1, . . . , xd) dΣ(x1, . . . , xd)

= f

(
x1, . . . , xd−1, 1−

d−1∑
k=1

xk

)
1{x∈[0,1]d−1,

∑d−1
k=1 xk≤1} dx1 · · · dxd−1

for any continuous function f .

Here is the lemma describing the desired convergence.
Lemma 31 (Asymptotic convergence of Pólya-Eggenberger urn [Athreya,
1969]). Let d ≥ 2 and R ≥ 1 be an integer. Let also β = (β1, . . . , βd) ∈ Nd \ {0}.
Let (Pn)n≥0 be the d-color Pólya-Eggenberger urn random process having R as
reinforcement parameter and β as initial composition. Then, almost surely and in
any Lt, t ≥ 1,

Pn

nR
−−−→
n→∞

V

where V is a d-dimensional Dirichlet-distributed random vector, with parameters(
β1

R , . . . , βd
R

)
.
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Remark 32. Let us recall that the convergence in Lt, t ≥ 1 implies the conver-
gence in law.

We now have the necessary tools to analyze the asymptotic behavior of
this distribution.
Proposition 33. When the election is drawnwith a Pólya-Eggenberger urn culture
(named P-E) with R = m! · r, the probability that all PSRs asymptotically agree is
lower bounded by 1

2 if r < 2
3 andm = 3, and by 1

4 if r < 1
6 andm = 4.

Proof. Let us recall (see Lemma 31) that a Pólya-Eggenberger urn asymptoti-
cally converges to the Dirichlet law (see Definition 13). Thus, we can calculate
the probability that a specific distribution of preferences occurs.

We now need to describe the eventDm where all positional scoring rules
agree. We use the known fact that all positional scoring rules will agree if all k-
approval voting rules agree with each other [Saari, 2012] and get for example
for m = 3: D3 = {(p1, p2, p3, p4, p5, p6) ∈ Σ | p1 + p2 > p3 + p4, p1 + p2 >

p5 + p6, p2 + p5 > p4 + p6, p1 + p3 > p4 + p6} using the following notation
(p1, p2, p3, p4, p5, p6) for the proportion of each preference in the election in
the following order (x1 ≻ x2 ≻ x3), (x1 ≻ x3 ≻ x2), (x2 ≻ x1 ≻ x3), (x2 ≻
x3 ≻ x1), (x3 ≻ x1 ≻ x2), (x3 ≻ x2 ≻ x1).We now come back to our initial question which is to compute
limn→∞PP−E(D3). Using Lemma 31, we are able to identify the limit law and
to compute PV (D), for every 0 < R ⩽ 4. Since the analytical is fastidious, we
use the Monte-Carlo method with a very high precision (n = 10,000,000) to
compute the integral and get the desired result. We recover the result on r by
doing the change of variable R = m! · r. We follow the exact same steps for
m = 4, with the only difference being the constraint used to define D4. Theprobability of D4 is again estimated using a Monte Carlo method with very
high precision (n = 10,000,000).

We now specifically examine the agreement between plurality and Borda
rule.
Proposition 34. When the election is drawnwith a Pólya-Eggenberger urn culture
with R = m! · r, the probability that plurality and Borda asymptotically agree is
lower bounded by 3

4 if r < 2
3 andm = 3, and by 3

5 if r < 1
6 andm = 4.

Proof. We follow the exact same steps as in the previous proof but we need
to construct a different space to find where Plurality and Borda agree. For
example form = 3,D3 = {(p1, p2, p3, p4, p5, p6) ∈ Σ | p1+p2 > p3+p4, p1+p2 >

p5 + p6, p1 + 2 · p2 + p5 > p3 + 2 · p4 + p6, 2 · p1 + p2 + p3 > p4 + p5 + 2 · p6}using the following notation (p1, p2, p3, p4, p5, p6) for the proportion of each
preference in the election in the following order (x1 ≻ x2 ≻ x3), (x1 ≻ x3 ≻
x2), (x2 ≻ x1 ≻ x3), (x2 ≻ x3 ≻ x1), (x3 ≻ x1 ≻ x2), (x3 ≻ x2 ≻ x1). We
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again compute the probabilities of D3 and D4 using a Monte Carlo method
with very high precision (n = 10,000,000).

To give a comparison, we describe a small example to compare Pólya-
Eggenberger urn and Walsh’s distribution.
Example 22. For the agreement plurality and the Borda rule to the election of
median candidates C∗ under the Walsh’s distribution, we have a lower bound
given by the plurality rule F1 (by Theorem 18) which is as follows: if m = 4,
PπW (F1(≻) = C∗) ⩾ 1− 2e−

n
32 is larger than 3

5 when n ⩾ 52.
Therefore, we can compare the lower bounds and observe that the lower

bound of the Pólya-Eggenberger urn model for r < 1
6 reaches similar value as

that of Walsh’s distribution from n ≥ 52. This implies that, when the number of
voters exceeds 52, the lower bounds become comparable.

We finally prove a positive probability of disagreement asymptotically for
every pair of PSRs.
Proposition 35. If the election is drawn with a Pólya-Eggenberger urn culture
with R < 4 then every pair of positional scoring rules F1 and F2 asymptotically
disagree with a positive probability, i.e., limn→∞P(F1(P) ̸= F2(P)) > 0.

Proof. Let F1,F2 be two positional scoring rules. There exist two positional
score vectorsα1 andα2 corresponding to these two rules. SinceF1 andF2 aredifferent, α1 and α2 differ on at least one component, i.e., there exists i ∈ [m]

such that α1
i ̸= α2

i . Let us denote ε = α1
i − α2

i > 0. We will show that there
exists a profile P such that limn→∞P(F1(P) ̸= F2(P)) > 0. Specifically, to
build such a profilewe consider an arbitrary profile such that the jth candidate
has an asymptotic score of 0, then we slowly increase the proportion of one
preference such that candidate j is ranked in position i untilF1(P) ̸= F2(P).
By doing so, we find that we can still increase this proportion from δ < ε

and keep the disagreement between the two rules. Thus, there exists a non
negligible set where F1(P) ̸= F2(P). Finally, we identify the limit law of a
Pólya-Eggenberger urn as the Dirichlet random variable thanks to Lemma 31
and conclude that limn→∞P(F1(P) ̸= F2(P)) > 0 because this is a continu-
ous density on a non negligible set.

This result means that any pair of positional scoring rules will disagree on
a nonempty set asymptotically. Thus, we cannot achieve the same type of
convergence results as in single-peaked distributions.
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3.8 . Agreement of Voting Rules in Practice

This section focuses on real-world electoral data. Given the natural rel-
evance of this question, it has already been addressed in several studies, in-
cluding those onAmerican elections [Regenwetter et al., 2007], Romanian elec-
tions [Roescu, 2014], and the parliamentary elections in the Austrian federal
state of Styria [Darmann et al., 2019]. However, the last one is themost closely
related to our work as it analyzes the outcomes of various voting rules, often
the same as ours, on real-world data. The study, based on data from the par-
liamentary elections in the Austrian federal state of Styria and using different
bootstrap settings, reports complete agreement between Borda and plural-
ity, almost complete agreement between plurality and the two-round system,
and more disagreement with the veto rule.

Another interesting work carried out in France, known as Voter
autrement [Bouveret et al., 2018], notably aims to understand the variability
induced by the choice of voting rules through data collection. We focus on
data from the 2017 presidential election for technical reasons: it is a single-
winner election, and we have access to complete rankings, which allows us to
avoid making additional assumptions for our experiments.

The authors of Voter Autrement have already worked on the question of
agreement among different voting rules with their data. However, they fo-
cused on plurality with runoff, (the actual rule used), approval voting, and
various graded scales (e.g., (0, 1, 2) or (−1, 0,+1)). Instead, we will conduct
a similar study focusing on positional scoring rules, as this experiment is in-
tended to illustrate our previous theoretical results.

We will specifically focus our experiment on positional scoring rules and
Condorcet-consistent rules, when a Condorcet winner exists.

In the “Voter autrement" dataset, only one file was suitable for our pur-
poses, namely stv111.csv with 11 candidates, because it contains 4,068 com-
plete preference orders. This choice has the significant advantage of requiring
no additional assumptions about the data, as incomplete data would other-
wise necessitate hypotheses to fill in the missing information on the prefer-
ence profile. However, it may introduce a bias, as we simply discard all incom-
plete preference orders. For our purpose of comparing voting rules with one
another, we assume that this does not interfere with the interpretation of the
results. To preserve anonymity, we relabel the candidates using the letters A
to K.

Before interpreting the results related to single-peaked distributions in
light of real-world data, we first aim to assess whether the data itself satisfies
the single-peaked property. To this end, we follow the approach introduced
by Faliszewski et al. [2011], Sui et al. [2013] and Elkind and Lackner [2014]; later
completed by esc [2021] and further developed in the thesis of Tydrichová
[2023]. Indeed, we will rely on the forbidden triples measure, as it is the only
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one that remains computationally feasible for profiles with 11 candidates and
4068 voters. This measure builds upon the definition in Definition 1 , by count-
ing the number of candidate triples that violate the single-peakedness condi-
tion with respect to a given axis. The idea is to quantify how far a given profile
is from being single-peaked, and then minimize this deviation.

Another commonly used measure of single-peakedness is Global Swaps
(GS), introduced by Erdélyi et al. [2013], which minimizes the number of swaps
of consecutive candidates required to transform the preference profile into
a single-peaked one. Even though both problems are NP-hard, experiments
from esc [2021], as well as our own, show that FT is significantly more efficient:
for profiles with more than six candidates, the computation remains feasible
with FT, whereas it becomes prohibitively slow with GS.

Following the work of Tydrichová [2023], we compute a single-peaked axis
by minimizing this measure and inverting the axis, we obtain the following
result: “François Asselineau" < “Jacques Cheminade" < “Nathalie Arthaud" <
“Philippe Poutou" < “Jean-Luc Mélenchon" < “Benoît Hamon" < “Emmanuel
Macron" < “Jean Lassalle" < “Nicolas Dupont-Aignan" < “François Fillon" < “Ma-
rine Le Pen". This ordering appears broadly consistent for all major candi-
dates, with the exception of “François Asselineau", whose placement may be
affected by his limited popularity in the data set.

We obtain a score, that is the number of forbidden triples, equal to 20,213.
However, to make this result interpretable, it is necessary to provide a pro-
portional baseline. To that end, we generated profiles under the impartial
culture model with m = 11 candidates and n = 4068 voters, ran the experi-
ment twice , and observed scores of 59,459 and 59,291, which are quite close.
These results indicate that the data set deviates only moderately from single-
peakedness. The result might be even stronger if we remove candidates with
low support. Therefore, this brief illustration supports the relevance of com-
paring our experimental data to the theoretical results obtained under single-
peaked distributions.

Table 3.1 presents the outcomes obtained from the stv111.csv data set,
considering only complete preference orders. Since we keep only complete
preference orders the data set is highly biased but this is not a problem be-
cause we want to compare rules with each other. However, we still anony-
mous for that part on winners because we want to avoid any political misin-
terpretation on political results. Since this data set admits a Condorcet winner,
all Condorcet-consistent rules are expected to agree on her. The table reports
the winners under all positional scoring rules, as well as under Borda and the
Condorcet winner.

We then apply the same analysis to two other data sets from
Voter autrement [Delemazure and Bouveret, 2024], namely irv_1.csv and
irv_2.csv, from the 2022 French presidential election. We merge these two
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Voting Rule Winner

plurality HBorda HCondorcet winner (if one exists) H2-approval H3-approval H4-approval H5-approval H6-approval H7-approval H8-approval C9-approval C10-approval (veto) C
Table 3.1: Winners according to various voting rules applied to the
stv111.csv dataset (only complete preferences orders)

data sets, as they are the only ones that contain complete rankings. We then
filter the data to retain only complete preference orders. While this step may
introduce a bias, it should not significantly affect the axis. Moreover, we aim
to follow the same procedure as before and avoid additional assumptions.

Following the same procedure, we compute a single-peaked axis by min-
imizing this measure and inverting the axis, we obtain the following result:
“Nicolas Dupont-Aignan” > “Nathalie Arthaud” > “Philippe Poutou” > “Fabien
Roussel” > “Jean-Luc Mélenchon” > “Yannick Jadot” > “Anne Hidalgo” > “Em-
manuelMacron” > “Jean Lassalle” > “Valérie Pécresse” > “Marine Le Pen” > “Éric
Zemmour”. This ordering appears broadly consistent for all major candidates,
with the exception of “Nicolas Dupont-Aignan", whose placement may be af-
fected by his limited popularity in the data set.

We obtain a score, that is the number of forbidden triples, equal to 2,457.
However, tomake this result interpretable, it is necessary to provide a propor-
tional baseline. To that end, we generated profiles under the impartial culture
model withm = 12 candidates and n = 412 voters, ran the experiment twice ,
and observed scores of 6,967 and 7,039, which are quite close. These results
indicate that the data set deviates only moderately from single-peakedness
and in similar proportions as in the previous experiment. Therefore, this brief
illustration supports the relevance of comparing our experimental data to the
theoretical results obtained under single-peaked distributions.

Table 3.2 presents the outcomes obtained from the irv_1.csv and
irv_2.csv data sets, considering only complete preference orders. Similarly
to the last experiment, since we keep only complete preference orders the
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data set is highly biased but this is not a problembecausewewant to compare
rules with each other. However, we still anonymous for that part on winners
because we want to avoid any political misinterpretation on political results.
Since this data set admits a Condorcet winner, all Condorcet-consistent rules
are expected to agree on her. The table reports the winners under all posi-
tional scoring rules, as well as under Borda and the Condorcet winner.

Voting Rule Winner

plurality KBorda KCondorcet winner (if one exists) K2-approval K3-approval K4-approval K5-approval E6-approval E7-approval E8-approval E9-approval E10-approval E11-approval (veto) E
Table 3.2: Winners according to various voting rules applied to
irv_1.csv and irv_2.csvdata sets (only complete preferences orders)

These experimental analysis confirms some theoretical findings observed
under structured preference cultures, namely a high degree of agreement be-
tween major positional scoring rules and Condorcet-consistent rules. More-
over, we recover a phenomenon previously described under Walsh’s distribu-
tion: there exists a transition point in the level of agreement between scor-
ing rules, depending on how rapidly their score vectors decrease. In particu-
lar, voting rules whose score vectors decrease earlier tend to align with each
other, as highlighted in Theorem 16. Indeed, as we approach the veto rule,
we observe a change in the winner. However, Theorem 16 predicts that this
transition should occur at an index ℓ ∈ [⌊m2 ⌋ + 1], which would correspond
to index 6 for the first experiment and 7 for the second. In our first experi-
ment, the agreement persists up to the 7-approval rule. The scores are close,
3776 for candidate H and 3630 for candidate C, indicating that the difference
is small. In the second one, the change of winner occurs earlier, specifically
between the 4-approval and 5-approval rules. Nonetheless, we still observe
the phenomenon described in Theorem 16, with an alignment of voting rules
up to a certain positional rule, followed by a switch to a different winner that
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persists until the veto rule. However, a key difference lies in the fact that
neither candidate H or K are median candidate. This results from the strong
political bias present in our data set, which stems from the exclusion of incom-
plete rankings. Moreover, our data set does not share the property of Walsh’s
model, which assigns higher probability weights tomedian candidate(s). Over-
all, this experiment allows us to partially recover the theoretical results. Fur-
ther experiments should be conducted using an unbiased data set to deter-
mine whether our findings remain consistent. However, having sufficiently
large data sets with complete preference orders remains complicated.

3.9 . Conclusion and Future Works

3.9.1 . Conclusion
In this chapter, we examined the variability of outcomes with different vot-

ing rules. The previous results on impartial cultures indicate that the probabil-
ity of disagreement is significant under impartial cultures, we study several dif-
ferent voting culture commonly used for experiments in social choice, where
the agreement is a lot higher. Specifically, we studied two single-peaked cul-
tures, namely Walsh’s and Conitzer’s distributions. Additionally, we provided
some results on the Mallows model and partially describe the outcomes un-
der the Pólya-Eggenberger urn model. Walsh’s and Conitzer’s distributions
tend to favor the election of median candidate(s) in the single-peaked axis,
and these candidates also turn out to be (weak) Condorcet winner(s), imply-
ing the agreement of several positional scoring rules (PSRs) with all Condorcet-
consistent rules. This (weak) Condorcet efficiency holds in general for all sym-
metric single-peaked distributions, which are natural distributions for exper-
iments when no additional information other than the single-peaked axis is
available. This leads to a fast convergence toward agreement among many
voting rules. The observed behavior under Walsh’s model aligns closely with
our experimental findings. We nevertheless observe that Conitzer’s distribu-
tion is less biased toward the median candidates because it happens to be
unbiased with respect to one PSR (namely plurality), contrary to Walsh’s dis-
tribution. While these single-peaked distributions enable fast convergence
to agreement, this is also the case for other structured distributions, such as
unimodal ones, where the agreement is very general among voting rules and
convergence is rapid. This behavior cannot be extended to Pólya-Eggenberger
urns where the probability of disagreement is non-negligible, even if it re-
mains high in some particular cases. In addition, we ran experiments on real-
world data and observed some similarities with the theoretical results.

Our findings highlight that particular attention should be taken when us-
ing voting cultures for experiments in social choice. Indeed, since we identify
cultures in which the agreement of different voting rules rapidly agree as the
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number of voters increases, conclusions drawn from experiments testing dif-
ferent voting rules for a problem should be interpreted with caution. One
could imagine very different conclusions about a problem, not because of
the problem itself, but because of the culture used: impartial cultures versus
single-peaked cultures, for example.

3.9.2 . Future Works
This work tells us important features on cultures but many questions re-

lated to that problem remain open:
• We could consider bounds on the probability to agree in finite elections
with Pólya-Eggenberger urn. The difficulty, however, lies in the depen-
dent structure of this distribution.

• Another promising avenue is on impartial culture. To the best of our
knowledge, the vast literature on this question tries to give explicit for-
mulas for the probability of disagreement between voting rules. For
more than three candidates, they quickly become uninterpretable or
impossible to find. An interesting question is whether we can derive
useful approximations, perhaps by applying techniques similar to those
used in Theorem 8 that yield practical and meaningful bounds.

• One idea could also be to consider nearly single-peaked distributions
to bridge the gap between impartial and single-peaked cultures and be
closer to real political elections.

• When voting rules asymptotically agree, we might conjecture that the
probability of not satisfying certain axioms might also decrease as the
election size increases.

• The same study could be done with strategic voters [Meir, 2018].
• One final question that may be of interest is whether there exists a cen-
tral rule thatmaximizes agreement with the various classically accepted
voting rules. Indeed, if such a rule exists, it could be seen as minimizing
the dilemma of choosing the “right" voting rule.

In this chapter, we took a significant step forward in our effort to under-
standwhat influences voting outcomes by examining how election results can
vary depending on the voting rule used. However, this analysis was conducted
from a static perspective, assuming that the ballots themselves remain un-
changed. Indeed, the underlying assumption in this chapter is that all voters
express truthfully their preferences. Yet, as shownbyGibbard [1973]; Satterth-
waite [1975], strategic voting is inevitable. Our next objective, therefore, is to
explore how strategic behavior can affect election results, a topic wewill begin
to address in Chapter 4.
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4 - Strategic Voting and its Consequences on
Plurality Voting Outcomes

Abstract
This chapter deals with iterative voting under the plurality rule, where

voters can strategically perform sequential deviations. Most works in iter-
ative voting focus on convergence properties or evaluate the quality of the
outcome. However, the iterative winner depends on the sequence of voters’
deviations. We propose to analyze to what extent this impacts the outcome
of iterative voting by adopting a qualitative, quantitative and computational
approach. In particular, we introduce the notions of possible and necessary
iterative winners. We first study the extreme scenario for the existence of a
necessary winner, where no voter has an incentive to deviate from her truth-
ful ballot. We show that this phenomenon occurs with high probability under
impartial cultures. Then, we explore the computational complexity of deter-
mining possible and necessary iterative winners, proving that the two prob-
lems fall in different complexity classes. Finally, we prove that the Condorcet
efficiency of plurality is increased by considering its iterative voting version.

Résumé
Ce chapitre traite du vote itératif avec la règle de vote pluralité, où

les électeurs peuvent effectuer des déviations séquentielles de manière
stratégique. La plupart des travaux sur le vote itératif se concentrent sur les
propriétés de convergence ou évaluent la qualité du résultat. Cependant, le
gagnant itératif dépend de la séquence des déviations des électeurs. Nous
proposons d’analyser son impact sur le résultat du vote itératif en adoptant
une approche qualitative, quantitative et computationnelle. En particulier,
nous introduisons les notions de gagnants itératifs possibles et nécessaires.
Nous étudions d’abord le scénario extrême où aucun électeur n’est incité à
changer son bulletin sincère, garantissant l’existence d’un gagnant nécessaire.
Nousmontrons que ce phénomène se produit avec une forte probabilité dans
le cas des cultures impartiales. Ensuite, nous explorons la complexité algorith-
mique de la détermination des gagnants itératifs possibles et nécessaires, en
prouvant que les deux problèmes appartiennent à des classes de complex-
ité différentes. Enfin, nous prouvons théoriquement que l’efficacité de Con-
dorcet augmente avec les mouvements stratégiques.

Most of the content of this chapter is based on a paper co-authored with VincentMousseau, Magdalena Tydrichová, and Anaëlle Wilczynski, which was accepted atthe 10th Workshop on Computational Social Choice (COMSOC 2025) [Mousseau et al.,2025a].
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4.1 . Introduction

Our analysis of the variability of voting outcomes continues in this second
chapter, which focuses on the impact of strategic voting in Plurality elections.
As established in Theorem 2, no voting rule can fully prevent strategicmanipu-
lation by voters. Instead, variousmodels allow suchmanipulation and analyze
the resulting outcomes [Meir, 2018]. Iterative voting [Meir, 2017] is a particular
voting game where voters are allowed to manipulate by performing succes-
sive moves. However, since voters manipulate sequentially, different possi-
ble outcomes can arise, depending on which voters’ deviations are chosen.
A natural question is thus to know which candidates turn out to be winners,
for some sequence of deviations, once convergence is reached. We propose
to answer this question by adapting the well-known notions of possible and
necessary winners [Konczak and Lang, 2005] to the iterative context. More
precisely, a possible iterative winner is a candidate for which there exists a
sequence of deviations eventually electing her at equilibrium. Analogously,
a necessary iterative winner is elected in all possible equilibria that can be
reached by the iterative voting process.

In this chapter, we follow the classical initial model of Meir et al. [2010]
where the voting rule is plurality, and voters perform direct best responses
when they are pivotal, i.e., they vote for the candidate they prefer the most
among those they canmake the newwinner. Under these assumptions, the it-
erative voting process is guaranteed to converge to a situation of equilibrium.
In such a setting, we analyze the iterative voting outcomes quantitatively and
qualitatively, and in particular the problems of possible and necessary itera-
tive winner.

For the necessary iterative winner problem, we have two possible scenar-
ios: either there are several deviation sequences but they all eventually elect
the same candidate, or a more extreme scenario occurs where no voter can
deviate from her truthful ballot and thus the initial winner turns out to be
the only iterative winner. We propose to quantify the occurrence of such a
phenomenon by analyzing how frequently a preference profile is already an
equilibrium. We show, under impartial (anonymous) cultures, a rather high
lower bound for the probability of this extreme scenario, and thus for the
probability of the existence of a necessary iterative winner.

In general, we investigate the computational complexity of the existence
problem of a possible/necessary iterative winner. It turns out that the prob-
lems fall into different complexity classes since the possible iterative winner
problem is NP-complete, while the necessary one is polynomial-time solvable.
Finally, we evaluate the quality of iterative voting outcomes by considering the
election of the Condorcet winner, when she exists, as an iterative winner. In
particular, we theoretically prove that the Condorcet efficiency, (i.e., the prob-
ability to elect a Condorcet winner when she exists) increases through the
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iterative process. More precisely, under impartial (anonymous) cultures, the
iterative version of plurality improves the Condorcet efficiency compared to
the one of plurality, confirming and generalizing experimental results [Grandi
et al., 2013].

Related Work:
The iterative voting model has been introduced by the seminal work

of Meir et al. [2010]. Since then, many articles have investigated iterative vot-
ing under different voters’ strategic behaviors and voting rules (seeMeir [2017]
for a recent survey).

In this chapter, we introduce the notion of possible and necessary iterative
winners, which are adaptations of the well-known concepts of possible and
necessary winners under incomplete preferences [Konczak and Lang, 2005],
which have been initially introduced to capture which outcomes can arise
when information is incomplete. Up to our best knowledge, these notions
have not been used so far to capture iterative voting outcomes. Nevertheless,
in the context of manipulation in voting, they have been applied, e.g., to deal
with incomplete information of the manipulators [Conitzer et al., 2011], as a
list of intermediate results in an iterative elicitation process where voters can
answer to the queries strategically [Dery et al., 2019], or to determine the out-
come of sequential voting in the context of social networks [Gaspers et al.,
2014]. Our computational results, stating a difference in complexity classes
between the possible and necessary iterative winner problems, are consis-
tent with the results of the literature regarding the initial notions. Notably,
while the necessary winner problem under partial preferences is in P for all
positional scoring rules, the possible one is NP-complete on this large class
of rules except for the plurality and veto rules [Baumeister and Rothe, 2012;
Betzler and Dorn, 2010; Konczak and Lang, 2005; Xia and Conitzer, 2011].

Note that considering all possible iterative outcomes that can arise, de-
pending on the sequence of voters’ deviations, is similar in spirit to the notion
of “parallel-universe” tie-breaking where the outcome is the set of all candi-
dates who could win using a particular tie breaking method. This has been
particularly investigated for multi-stage voting rules where the choice of the
candidates to eliminate at a given stage can highly impact the final winner
of the voting procedure [Freeman et al., 2015; Tideman, 1987]. The different
sequences of eliminated candidates at the different stages can then be rep-
resented as a tree [Freeman et al., 2015], and we can use a similar represen-
tation for all possible sequences of deviations potentially leading to different
winners.

Instead of considering the diversity of iterative voting outcomes, where
two equilibria are indistinguishable if they elect the same winner, one can fo-
cusmore specifically on the possible equilibria that can be reached. This study

77



has notably been conducted by Rabinovich et al. [2015], who establish that
checking whether a given ballot profile is a reachable equilibrium is NP-hard,
in a similar idea as our NP-completeness proof for the possible iterative win-
ner problem. Following a similar high-level approach to identifying all Nash
equilibria, the work of Thompson et al. [2013] conducts extensive experiments
to explore a wide range of possible outcomes. However, their study differs in
spirit from ours, as it considers an alternative response model incorporating
utility-based incentives for deviating from the truthful vote. In particular, they
focus on a specific framework in which voters may have an incentive to vote
truthfully.

In an orthogonal perspective, one can examine how good or bad are the
outcomes of iterative voting. In particular, several works have analyzed the
iterative voting outcomes by comparing them to the initial truthful one, follow-
ing either a worst-case analysis based on an approach similar to the price of
anarchy, or an average-case analysis [Brânzei et al., 2013; Kavner and Xia, 2021,
2024]. Mostly, the outcomes have been evaluated via their social welfare, but
it is also possible to consider other measures, such as the probability to elect
the Condorcet winner when she exists [Gehrlein and Lepelley, 2010]. Grandi
et al. [2013] have followed this latter approach by experimentally analyzing
the Condorcet efficiency of the iterative voting process. We go a bit further by
theoretically demonstrating that indeed the iterative variant of plurality has
a higher Condorcet efficiency compared to the initial plurality rule, where we
consider the probability of electing a Condorcet winner over all possible devi-
ation sequences with equal weights, under impartial (anonymous) cultures.

4.2 . Preliminaries on the Model

In Section 2.5, we already defined the classical iterative voting model that
we will use. We now introduce some concepts and properties of this model
that will be used in the following sections.

We recall that PW (s) denote the set of potential winners according to a
given score vector s and Imn the set of all possible candidates’ scores under
plurality, i.e., Imn := {s ∈ Nm |

∑m
j=1 sj = n}.

We introduce the following notion to group the scores by the number of
potential winners.
Definition 14. Let Sj

n be the set of all score vectors in an n-voter election such
that the union of potential winner sets over all voters contains exactly j candidates,
i.e., Sj

n = {s ∈ Imn : |PW (s)| = j}.

Note that (Sj
n)mj=1 forms a partition of Imn . Especially, S1

n corresponds to allscore vectors with a unique potential winner. More precisely, for every score
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vector s in S1
n, there exists a candidate which is the unique potential winner

for all voters, and thus it is the winner in s.
We then consider a best response dynamics which is defined via deviation

sequences. We denote byDS(P) the set of all possible deviation sequences
for preference profile P defined as follows:
Definition 15 (Deviation sequence). A sequence of strategy profiles
⟨b0, b1, . . . , br⟩ is a deviation sequence for preference profile P if:

• b0 corresponds to the initial truthful ballot profile b⊤,

• for every step t ∈ [r], state bt results from a best response by exactly one
voter from state bt−1, i.e., for every step t ∈ [r], there exists one voter i ∈ N

and one candidate y ∈ PW t−1
i \ {wt−1} such that y ≻i z for every z ∈

PW t−1
i , where bti = y and btj = bt−1

j for every voter j ∈ N \ {i},

• the sequence is maximal, i.e., br is an equilibrium where no voter has inter-
est to change her ballot.

A deviation sequence is said to be empty if it is restricted to the initial ballot
profile ⟨b0⟩ which is already an equilibrium.

We distinguish two types of strategic moves, one from a potential winner
(FPW) (i.e., a deviation by voter i at step t from bt−1

i to bti where bt−1
i = x and

x ∈ PW t−1) and one from a non potential winner (FNPW) (i.e., a move by
voter i at step t from bt−1

i to bti where bt−1
i = x and x /∈ PW t−1).

FromMeir et al. [2010], we have an upper bound on the number of moves
before convergence, in plurality iterative voting, which is given by O(m · n).
We state below that this bound can be improved.
Proposition 36. The number of moves in any deviation sequence is inO(m+n ·
log(m)).

Proof. We identify the worst-case scenario for the number of strategic moves
in a deviation sequence by analyzing the worst-case subsequences. Since the
number of potential winners can only decrease throughout the process, we
define a subsequence of strategic moves as the set of moves that occur while
the number of potential winners remains constant. We then examine the
worst-case scenario in which the number of strategic deviations is maximized
within each such subsequence. We start with a score vector in Sm

n . By Obser-vation 38, the first move yields a score vector in Sm−1
n , in which the (unique)

non-potential winner y1 has less than n
m votes. Since each voter i such that

b1i = y1 can deviate to one of them− 1 remaining potential winners, we have
at most n

m FNPW deviations, each yielding, in the worst case, a new score vec-
tor in Sm−1

n . These are then followed by a FPW deviation that yields a score
vector in Sm−2

n . We repeat the process–for each k ∈ [m], when we reach a
score of Sm−k

n , we have, in the worst case:
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• m− k potential winners, each obtaining approximately n
m−(k−1) votes,

• one non-potential winner obtaining less than n
(m−(k−1)) votes,

• k − 1 additional non-potential winners, each receiving zero votes.
We can thus perform at most FNPW moves and one FPW move before the
next decrease of the number of potential winners. By Meir [2022], |PW t| can
only decrease with t, so the process will terminate, and we will have at most

1 +
m∑
k=2

1 +
n

m− k
= m+ n ·

m∑
k=2

1

m− k

= m+ n ·
m−2∑
l=0

1

l
⩽ m+ n · log(m)

strategic moves.
The following example shows the potential diversity of iterative voting out-

comes depending on the choice of the deviation sequence. This example uses
the same instance as in Example 9, but models different sequences of moves.
Example 23. Consider an election with five voters and four candidates, with vot-
ers’ preferences as follows:

x1 ≻1 x3 ≻1 x4 ≻1 x2
x2 ≻2 x1 ≻2 x3 ≻2 x4
x3 ≻3 x2 ≻3 x1 ≻3 x4
x4 ≻4 x2 ≻4 x1 ≻4 x3
x4 ≻5 x3 ≻5 x1 ≻5 x2

When needed, a lexicographic tie-breaking rule is used. Initially, in the truthful
preference profile, x4 is the winner. We show that each candidate can be the final
winner in a different deviation sequence:
(a) If voter 2 deviates from x2 to x1, then no other voter has an incentive to

deviate afterwards and thus x1 is finally elected.
(b) If voter 3 deviates to x2, followed by voter 5 who deviates to x1 and voter

4 who deviates to x2, then no other voter has an incentive to deviate after-
wards and thus x2 is finally elected.

(c) If voter 1 deviates to x3, followed by voter 4 who deviates to x2 and voter
5 who deviates to x3, then no other voter has an incentive to deviate after-
wards and thus x3 is finally elected.

(d) If voter 3 deviates to x2, followed by voter 1 who deviates to x4, then no other
voter has an incentive to deviate afterwards and thus x4 is finally elected.

One can verify that all described deviations are valid best responses.
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Consequently, the notions of possible and necessary iterative winners nat-
urally follow from the fact that different iterative winners can arise from dif-
ferent deviation sequences.
Definition 16 (Possible iterative winner). A candidate x is a possible it-
erative winner for preference profile P if there exists a deviation sequence
⟨b0, b1, . . . , br⟩ ∈ DS(P) such that wr = x.

Definition 17 (Necessary iterativewinner). A candidatex is a necessary iterative
winner for preference profile P if, for every deviation sequence ⟨b0, b1, . . . , br⟩ ∈
DS(P) we have wr = x.

By definition, a necessary iterative winner is also a possible iterative win-
ner.

Let us provide below some observations to make the connections be-
tween these two concepts of iterative winner and the best response devia-
tions based on potential winners. First of all, strategicmoves are only possible
towards potential winners. Thus, once a candidate leaves the set of potential
winners, she can never return again.
Observation 37. If a candidate x is a possible iterative winner for preference
profile P , then there exists a deviation sequence ⟨b0, b1, . . . , br⟩ ∈ DS(P) such
that x is a potential winner all along the sequence: ∀t ∈ {0, 1, . . . , r}, x ∈ PW t.
In particular, x ∈ PW 0.

Moreover, from the definition of potential winner, if we remove one vote
to a not currently winning potential winner, then she does not fulfill anymore
the definition.
Observation 38. Let us consider a deviation sequence ⟨b0, b1, . . . , bT ⟩ ∈ DS(P)

and the potential winner x ∈ PW t \{wt} such that the best response at step t+1

is a FPW move, i.e., the deviation from state bt to reach bt+1 is performed by a
voter i ∈ N with bti = x. Then x /∈ PW t+1.

The concepts of possible and necessary iterative winners evaluate the out-
comes of iterative voting processes from a qualitative perspective. Indeed, all
deviation sequences must reach the same winner for the necessary iterative
winner, whereas only one deviation sequence is required for the possible iter-
ative winner. Another perspective is to take a more quantitative point of view.
To this end, based on Section 2.6, we will also provide a probabilistic analysis
of iterative voting outcomes.

Let us now start our analysis of deviation sequences both from a qualita-
tive and quantitative perspective.
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4.3 . Diversity of Iterative Winners

In this section, we will investigate how diverse iterative winners can be.
We will first study the number of possible iterative winners and then focus on
the extreme casewith a necessary iterative winner, by analyzing the particular
scenario where the deviation sequence is empty.

4.3.1 . Number of Possible Iterative Winners
We first observe that the iterative winner is determined when there are at

most two potential winners.
Observation 39. For any deviation sequence ⟨b0, . . . , br⟩, if |PW t| = 2 for a
given step t ∈ {0, 1, . . . , r}, then the iterative winner of this sequence will be the
winner of the pairwise comparison between the two candidates in PW t.

Observation 39 yields directly some straightforward corollaries:
Corollary 40. If there exists a Condorcet winner c∗, and if c∗ ∈ PW 0 with
|PW 0| = 2, then c∗ is the necessary iterative winner.

Corollary 41. A Condorcet loser can never be a possible iterative winner.

Moreover, it can be used to bound the number of possible winners when
there are only three candidates.
Proposition 42. Whenm = 3, there exist at most two possible iterative winners.

Proof. If there exists a Condorcet winner x then, since m = 3, there exists a
weak Condorcet loser. In fact, x is winning every pairwise comparison there-
fore comparing the two other candidates tells us who is the Condorcet loser
(resp., the two weak Condorcet losers). By Observation 39, the Condorcet
loser (resp., the weak Condorcet loser, which is disadvantaged by the tie-
breaking) cannot win. Hence, there can be at most two possible iterative win-
ners.

If there does not exist a Condorcet winner then, sincem = 3, we have to
get either a strict or a weak Condorcet cycle of pairwise comparisons between
these three candidates. In the case of a strict cycle, if we name y the initial win-
ner, after the first strategic move we necessarily have a comparison between
y and one of the other two candidates. However, with the strict Condorcet
cycle one of these two need to lose against y thus, by Observation 39, this
candidate cannot be elected. In the second case, the loser of the tie-breaking
is also losing, helping us concluding the proof.

Nevertheless, there exist situations where no candidate can be excluded
from the set of possible iterative winners. We generalize below the observa-
tion made in Example 23 to show that for any numberm of candidates, there
exists a preference profile where all m candidates are possible iterative win-
ners.
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Proposition 43. There exist elections where all m candidates are possible itera-
tive winners, for everym ≥ 4.

Proof. The case of m = 4 has already been shown in Example 23. We will
provide here a general construction for everym ≥ 5.

We will build a preference profile P with m + 1 voters and candidates
x1, . . . , xm. To this purpose, we start with a preference profileP0 where each
voter i ∈ [m − 1] has the preferences xi ≻i xi+1 ≻i · · · ≻i xm ≻i x1 ≻i

· · · ≻i xi−1, voter m has the preferences xm ≻m xm−1 ≻m · · · ≻m x2 ≻m

x1, and voter m + 1 has the preferences xm ≻m+1 xm−2 ≻m+1 · · · ≻m+1

x⌊m−1
2

⌋+1 ≻m+1 x1 ≻m+1 x2 ≻m+1 · · · ≻m+1 x⌊m−1
2

⌋ ≻m+1 xm−1. Then, we
obtain our final preference profile P from ≻0 by swapping the positions of
the adjacent candidates x1 and xm in agent 3 to agent m − 1’s preference
orders.

For each candidate, we will describe a deviation sequence which leads to
her election. When needed, we use the lexicographic tie-breaking rule.

• x1: Voter m − 1 deviates to x1, then voter 2 deviates to xm, and voter
3 deviates to x1. Afterwards, the only potential winners are x1 and xmand, by construction, more voters prefer x1 to xm. It follows that thedeviation sequence will finally elect x1.

• xi, for 2 ≤ i ≤ m−1
2 : Voter i + 1 deviates to xi+2, then voter i − 1 devi-

ates to xi, and voterm deviates to xi+2. Afterwards, the only potentialwinners are xi and xi+2 and, by construction, more voters prefer xi to
xi+2. It follows that the deviation sequence will finally elect xi.

• xi, for m−1
2 < i < m − 1: Voter i − 1 deviates to xi, then voter m − 1

deviates to x1, and then voter m deviates to xi. Afterwards, the only
potential winners are xi and x1 and, by construction, more voters prefer
xi to x1. It follows that the deviation sequence will finally elect xi.

• xm−1 if m > 5: Voter m − 2 deviates to xm−1, then voter 1 deviates to
x2, and then voter m deviates to m − 1. Afterwards, the only potential
winners are x2 and xm−1 and, by construction, more voters prefer xm−1to x2. It follows that the deviation sequence will finally elect xm−1.

• xm−1 ifm = 5: Voterm−2 deviates to xm−1, then voterm+1 deviates to
x1 (this is a best response because xm−2 = x⌊m−1

2
⌋+1 when m = 5 and

xm−2 is not a potential winner anymore because of the first deviation).
Then, voter 2 deviates to xm−1. Afterwards, the only potential winnersare x1 and xm−1 and, by construction, more voters prefer xm−1 to x1. Itfollows that the deviation sequence will finally elect xm−1.

• xm: Voter 1 deviates to x2, then voter 3 deviates to xm. Afterwards, theonly potential winners are x2 and xm and, by construction, more voters
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prefer xm to x2. It follows that the deviation sequence will finally elect
xm.

A natural question is how often this situation occurs or, more generally,
what is the typical number of possible iterative winners. To get quickly some
first insights, we have drawn 1,000 elections, under impartial culture, where
the preference profile is not an equilibrium, for each couple (m,n) withm ∈
{3, 4, 5}, and 5 ≤ n ≤ 15, and we have computed the average number of
possible iterative winners, represented in Figure 4.1. We note that, regardless
the value of m, this average is rather low (less than 1.6 for all cases studied),
and suggests a decreasing trend.
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Figure 4.1: Average number of possible iterative winners in function of n (for
m ∈ {3, 4, 5}) under IC

For a more in-depth view, we also provide in Section 4.3.1 the distribution
of the number of possible iterative winners of these randomly generated elec-
tions. We indeed observe that the vast majority of instances have a unique
possible (and thus necessary) iterative winner. While for each m, there are
still about 20% of instances with two possible iterative winners, the situations
with more than two possible iterative winners, and in particular the extreme
situation from Theorem 43, seem to be extremely rare.
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Figure 4.2: Distribution of the number of possible iterative winners as a func-tion of n (form ∈ {3, 4, 5}) under IC
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Let us present the same experiment under impartial anonymous culture
following the same parameters (i.e., 1,000 elections where the preference
profile is not an equilibrium, for each couple (m,n) with m ∈ {3, 4, 5}, and
5 ≤ n ≤ 15). We have computed the average number of possible iterative
winners, represented in Figure 4.3.
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Figure 4.3: Average number of possible iterative winners in function of n (for
m ∈ {3, 4, 5}) under IAC

Section 4.3.1 provides a detailed view of the number of winners in each
case, under the same parameters as in the IC model but assuming the IAC
model instead.
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The results are very similar under both impartial cultures. However, we
sometimes observe small differences in the number of winners, which tends
to be slightly lower under IAC. This is expected to become more pronounced
as the number of voters increases, since IAC assigns lower probability weights
to balanced score profiles.

4.3.2 . Extreme Case of Necessary Iterative Winner
Let us now examine how frequently the initial ballot profile is already an

equilibrium, leading hence to an empty deviation sequence, where the initial
winner turns out to be the only possible iterative winner, and thus the neces-
sary iterative winner. From Proposition 73 and an adaptation of Theorem 14
in [Xia, 2012], we know that, for each m, the proportion of truthful ballot pro-
files fromwhich no voter has an incentive to deviate, tends to 1 as n increases.
To better understand the behavior of iterative voting processes, even in small
elections, we are particularly interested here in the rate of this convergence.
While deriving an exact formula seems challenging, we propose, for each pair
(m,n), an increasing lower bound in n for the proportion of equilibrium pro-
files. Let Em

n be the set of all preference profiles P that are equilibria. We
start by providing some general results on the set of potential winners that
will be used to establish the above-mentioned lower bound. Indeed, one way
to deal with iterative voting is to track the set of potential winners over time
t, i.e., PW t.

The next lemma provides a characterization of potential winners:
Lemma 44. Given a score vector s ∈ Imn , a candidate y is a potential winner for
at least one voter i ∈ [n], i.e., y ∈ PW (s), if and only if all conditions (i) - (v) hold:

(i) ∀x▷ y, sx ≤ sy + 1

(ii) ∀x▷ y, z ▷ y, sx ≤ sy or sz ≤ sy

(iii) ∀x, z such that y ▷ x, z, sx ≤ sy + 1 or sz ≤ sy + 1

(iv) ∀x such that y ▷ x, sx ≤ sy + 2

(v) ∀x, z such that x▷ y ▷ z, sx > sy ⇒ sz ≤ sy + 1

Proof. ⇐We suppose the conditions (i)− (v) all hold, and we show that they
are sufficient for y to be a potential winner for at least one voter. Conditions
(i) and (iv) together imply that for each candidate x, we have sx ≤ sy + 2:

• Suppose that there exists a candidate z such that sz = sy+2. Condition
(i) implies that y ▷ z. Therefore, y is a potential winner for each voter
voting for z: indeed, wehave sy+1 = sz−1, and y beats z by tie-breaking.Moreover:

– condition (iii) ensures that for each x such that y▷ x, sx ≤ sy +1,
and in case of equality, y beats x by tie-breaking.
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– condition (v) implies that for each x▷ y, we have sx ≤ sy < sy +1,
so y wins over x.

• Suppose now that for each candidate z, sz < sy + 2, and that there
exists a candidate x▷y such that sx = sy+1. Therefore, y is a potential
winner for each voter voting for x. Indeed, sx − 1 < sy + 1, so y wins
over x if ever it receives one vote from x. Moreover:

– condition (ii) implies that for each x′▷ y, x′ ̸= x, we have sx′ ≤ sy ,so sx′ < sy + 1.
– condition (v) implies that for each z such that y ▷ z, sz ≤ sy + 1,
and in case of equality, y beats z by tie-breaking.

• Finally, it is easy to see that whenever sy ≥ sx for all x▷y, and sz ≤ sy+1

for each z such that y ▷ z, y is a potential winner for all voters.
⇒ Now we need to prove that each of these conditions is actually necessary:

• if (i) does not hold, then there is a candidate x such that sx > sy + 1.
Hence, even if one voter ofxdeviates to y, wewill still have sx−1 ≥ sy+1,
and since x wins over y by tie-breaking, y can not be a potential winner
for any voter.

• if (ii) does not hold, then there exist two candidates x and z with x, z▷y,
such that sx > sy and sy > sy. Therefore, sx ≥ sy + 1 and sz ≥ sy + 1,
and as both x and z win over y by tie-breaking, y can not be a potential
winner.

• if (iii) does not hold, there exist two different candidates x, z such that
y▷x, z and sx > sy+1, sz > sy+1. In other words, even if y obtains one
more vote (possible from one of the candidates x and z), there will be
at least one of y, z having a strictly higher score than y, and therefore y
can not be a potential winner.

• if (iv) does not hold, there exists a candidate x such that sx > sy +2, in
other words, sx − 1 > sy + 1, so y can not be a potential winner.

• if (v) does not hold, there exist x ▷ y and z such that y ▷ z such that
sx > sy and sz > sy + 1. If y obtains one extra vote from z, we will still
have sx ≥ sy + 1, so x wins over y by tie-breaking. Otherwise, z wins
over y. Hence, y can not be a potential winner.

Lemma 44 allows to determine the size of Sm
n , as stated below.

Lemma 45. The number of score vectors in Imn withm potential winners is equal
tom, i.e., |Sm

n | = m.
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Proof. Let n = qm+ r, r ∈ {0, . . . ,m− 1}, and s ∈ Sm
n . Let us denote bymins,resp. maxs, the minimum, resp. maximum, score value in s. Without loss of

generality, we can rename the candidates as 1, 2, . . . ,m so that i▷ j iff i < j,
and the score of candidate i corresponds to the i-th component si of s.Since s ∈ Sm

n , the conditions (i) − (v) of Lemma 44 must be satisfied
for each component si of s. In particular, we can make the following three
observations:
O1 : mins ≥ q − 1: let us assume for contradiction thatmins ≤ q − 2. Then

the condition (iv) of Lemma 44 implies that maxs ≤ q for each i ∈ [m],
so

m∑
i=1

si ≤ (q − 2) + (m− 1)q < n.

O2 : maxs ≤ q + 2: similarly to the previous case, let us assume for contra-
diction thatmaxs ≥ q + 3. Thenmins ≥ q + 1, and

m∑
i=1

si ≥ (q + 3) + (m− 1)(q + 1) = qm+ q + 2 > n.

O3 : It is easy to see thatmins ≤ q andmaxs ≥ q.
We are now ready to prove the statement by case distinction on r:

• r = 0 : There are two possible values ofmins:
– mins = q − 1. Then we necessarily have maxs = q + 1, otherwise,
the sumof all components of swould be strictly less than n. Condi-
tions (ii) and (iii) of Lemma 44 imply that there is a unique com-
ponent of score maxs, which implies that there is also a unique
component of scoremins (to ensure that∑m

i=1 si = n). The condi-
tion (v) implies that s1 = q− 1. We then need to choose the candi-
date i ∈ {2, . . . ,m} such that si = q + 1, all remaining candidates
achieving the score of q–we note that for each possible value of i,
the resulting vector satisfies Lemma 44. This yieldsm− 1 vectors
of Sm

n .
– mins = q. We have then maxs = q–otherwise, the sum of all com-
ponents is greater than mq = n. There is a unique vector of this
type, where all components are of value q.

Put together, we have |Sm
n | = (m− 1) + 1 = m.

• r ≥ 1 : The previous case implies that there is no s ∈ Sm
n such that

mins = q − 1, and it is easy to see that maxs > q. Hence, the above
observations imply thatmins = q, andmaxs ∈ {q + 1, q + 2}:
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– maxs = q+1: there are r components of s of value q+1, and (m−r)
components of value q. The condition (ii) of Lemma 44 implies
that for each i ∈ [m] such that si = q, there is at most one j < i

such that sj = q+1. Therefore, for each i > (m−r)+1, si = q+1–in
other words, the (r− 1) last components of s equal q+1. There is
one remaining component of value q+1 to be placed to one of the
(m − r) + 1 first positions. It is easy to check that regardless the
choice, the score will satisfy all conditions of Lemma 44. Hence,
there are (m− r + 1) scores of this type in Sm

n . Note that if r = 1,
we are done, and |Sm

n | = m.
– maxs = q + 2 - note that this can only occur for r ≥ 2. There are
then (r−2) components of value q+1, and (m−r+1) components
of value q. Note that there always exist (at least two) components
of value q, so conditions (ii) and (iii) of Lemma44 imply that there
is a unique component of scoremaxs = q+2. The condition (v) of
Lemma 44 implies that for each pair i, j such that si = q, sj = q+1,
we have i < j. Similarly, the condition (i) implies that for each pair
i, j such that si = q, sj = q + 2, we have i < j. In other words, the
(m− r+1) first components of s are all of value q, and we need to
place the unique component of value q+2 to one of the remaining
(r − 1) places. As previously, it is easy to check that each possible
choice yields a score satisfying Lemma 44. Hence, there are (r−1)

scores of this type in Sm
n .

Putting both types together, we have |Sm
n | = (m−r+1)+(r−1) = m.

Using the result of Lemma 45 as base case, we can finally determine the
size of Sj

n for each j ∈ [m].
Lemma 46. For each k ∈ [m], |Sm−k

n | = (m− k) ·
(
n+k−2

k

)
.

Proof. Let us start by defining the set of partial scores S̃m−k
n as follows: for

each s ∈ Sm−k
n , we define s̃ ∈ S̃m−k

n such that s̃i = si for each i /∈ PW (s), and
for each j ∈ PW (s), s̃j is a variable such that we have∑

j∈PW (s)

s̃j = n−
∑

i/∈PW (s)

si.

Note that two (ormore) scores s, s′ ∈ Sm−k
n can yield the same partial score of

¯Sm−k
n - this happens if PW (s) = PW (s′) and each non-potential winner gets

the same number of votes in both s and s′. We remove these duplicates from
S̃m−k
n . Lemma 45 implies that each partial score of S̃m−k

n can be completed
into (m − k) scores of Sm−k

n . Therefore, we have |Sm−k
n | = (m − k) · |S̃m−k

n |,
and it remains to prove that |S̃m−k

n | =
(
n+k−2

k

).
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We proceed by induction on k. If k = 0, Lemma 45 implies that |Sm−k
n | =

(m − k), and |S̃m−k
n | = 1 =

(
n−2
0

)
. Let us now suppose that for given k, we

have, for each n ⩾ 0, S̃m−k
n =

(
n+k−2

k

), and let us prove that, for every n ⩾

0, S̃
m−(k+1)
n =

(
n+k−1
k+1

).
We have:

S̃m−k
n+1 =

(
n+ 1 + k − 2

k

)
=

(n+ k − 1)!

k!(n− 1)!
=

=
(n+ k − 1)!(k + 1)

k!(k + 1)(n− 2)!(n− 1)
=

=

(
n+ (k + 1)− 2

k + 1

)
· k + 1

n− 1
=

= S̃m−(k+1)
n · k + 1

n− 1

Therefore, we get, for every n ⩾ 0, S̃
m−(k+1)
n = S̃m−k

n+1 · n−1
k+1 =

((n+1)+k−2
k

)
·

n−1
k+1 = (n+k−1)!(n−1)

k!(k+1)(n−1)! = (n+k−1)!(n−1)
k!(k+1)(n−1)! =

(
n+k−1
k+1

), which ends the proof.
We are now ready to present the main results of this section, which estab-

lish a lower boundon the probability that a preference profile (under impartial
anonymous culture or impartial culture) is an equilibrium. We begin with the
case of impartial anonymous culture.
Theorem47. Under impartial anonymous culture (IAC),PIAC(E

m
n ) ≥ PIAC(S

1
n),

where PIAC(S
1
n) increases with respect to n.

Proof. As S1
n ⊂ Em

n , we have PIAC(E
m
n ) ⩾ PIAC(S

1
n). Under IAC, we have

PIAC(S
1
n) = |S1

n|
|Imn | . By Lemma 46 (applied for k = m − 1), we get |S1

n| =(
n+(m−1)−2

m−1

), and we have |Imn | = (n+m−1
m−1

).
Put together, we obtain, after simplification, PIAC(S

1
n) =

n·(n−1)
(n+m−1)(n+m−2) .It remains to be proven that PIAC(S

1
n) increases with respect to n. Indeed,

we have PIAC(S
1
n+1)−PIAC(S

1
n) =

2m−2
(n+1)·(n+2)·(n+3) > 0 whenever n > 0 and

m > 2.
We provide below a brief illustration of the growth rate of this lower

bound.
Example 24. In an election with 3 candidates, the probability for a preference
profile to be at equilibrium under IAC is at least 0.68 for 10 voters and at least 0.82
for 20 voters. In an election with 5 candidates, this probability is at least 0.49 for
10 voters and at least 0.69 for 20 voters.
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Figure 4.5 is an illustration form = 3 andm = 5:
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Figure 4.5: Plot of PIAC(S
1
n) =

n(n−1)
(n+2)(n+1) from Theorem 47

We now establish an analogous result under impartial culture, starting
with the following observation, based on the fact that there are n voters’ pref-
erences independently sampled from the same distribution, and we have m

possibilities for the most preferred candidate of each voter.
Observation 48. Whenever all voters’ preferences are sampled with independent
and identical random variables, then the resulting score vector s⊤ follows a multi-
nomial law Multi(q, n) where q = (q1, . . . , qm) and qj := PC({WP (s

⊤) = j}), for
every j ∈M .

Under impartial culture, computing explicitly PIC(S
1
n) becomes much

more harder. Instead, we prove the existence of an increasing lower bound
in n.
Theorem 49. Under impartial culture (IC), PIC(E

m
n ) ≥ 1+ m·(m−1)

2 · (ϕ( −2
σ·
√
n
)−

ϕ( 2
σ·
√
n
)), where ϕ is the cumulative distribution function of a standard Gaussian,

σ =
√

2
m and this probability is increasing with respect to n.

Proof. As in the proof of Theorem 47, we use PIC(E
m
n ) ⩾ PIC(S

1
n). We start

by the following remark: “if for each pair of candidates i, j ∈M , |si − sj | ≥ 2,
then there is a unique potential winners in score s". Therefore,

PIC(S
1
n) ≥ PIC(∀i, j ∈M, |si − sj | ≥ 2)

93



There exist (m2 ) = m·(m−1)
2 pairs of candidates. We denote X

(i)
k the random

variable that equals if the k-th voter has voted for the i-th candidate, and 0
otherwise. We then denote

Y i,j
k = X

(i)
k −X

(j)
k , ∀i ̸= j

the difference of those random variables such that si − sj =
∑n

k=0 Y
i,j
k . Note

that (Y i,j
k )1⩽k⩽n are independent,

PIC(Yk = 1) = PIC(Yk = −1) = 1

m

and
PIC(Yk = 0) = 1− 2

m

Therefore,
PIC(∀i, j ∈M, |Si − Sj | ≥ 2) = PIC(∀i, j ∈M, |

n∑
k=0

Y i,j
k | ≥ 2)

. By Bonferroni’s inequality,

PIC(∀i, j ∈M, |
n∑

k=0

Y i,j
k | ≥ 2) ≥

m·(m−1)
2∑

k=0

PIC(|
n∑

k=0

Y i,j
k | ≥ 2)−(m · (m− 1)

2
−1)

As all Y i,j
k follow the same law we have:

m·(m−1)
2∑

k=0

PIC(|
n∑

k=0

Y i,j
k | ≥ 2)− (

m · (m− 1)

2
− 1)

= 1 +
m · (m− 1)

2
· (PIC(|

n∑
k=0

Y i,j
k | ≥ 2)− 1)

It remains to find a lower bound to
PIC(|

n∑
k=0

Y i,j
k | ≥ 2)

= PIC(

n∑
k=0

Y i,j
k ≥ 2) + PIC(

n∑
k=0

Y i,j
k ⩽ −2)

Using Berry-Essen’s theorem [Berry, 1941; Esseen, 1942] we get the following
lower bounds:

PIC(

n∑
k=0

Y i,j
k ⩽ −2) ≥ ϕ(

−2
σ ·
√
n
)− C · ρ

σ3 ·
√
n
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and
PIC(

n∑
k=0

Y i,j
k ≥ 2) ≥ PIC(

n∑
k=0

Y i,j
k > 2)

= 1− PIC(

n∑
k=0

Y i,j
k ⩽ 2) ≥ 1− ϕ(

2

σ ·
√
n
)− C · ρ

σ3 ·
√
n

, where σ is the standard deviation, C is a constant, ρ the moment of order 3,
ϕ is the repartition of a standard gaussian and t ·σ

√
n = 2, t from the original

formula. However, if we compute ρ for∑n
k=0 Y

i,j
k , we obtain ρ = 0, therefore

simplifying the inequality as follows:
PIC(|

n∑
k=0

Y i,j
k | ≥ ϕ(

−2
σ ·
√
n
) + 1− ϕ(

2

σ ·
√
n
)

As expected, this converges to 1 asymptotically in n since ϕ(0) = 0. We finally
get:

PIC(E
m
n ) ≥ 1 +

m · (m− 1)

2
· (ϕ( −2

σ ·
√
n
)− ϕ(

2

σ ·
√
n
))

Note that
ϕ(
−2

σ ·
√
n
)− ϕ(

2

σ ·
√
n
)

can be verified to be negative since this the repartition of a standard gaussian.
Therefore, this bound is increasing and goes to 1 asymptotically in n.

Thanks to Theorem 49, the lower bound of IC increases slowly compared
to that of IAC.
Example 25. In an election with 3 candidates, 70 voters are needed for the prob-
ability to exceed 0.30, and 137 voters for it to exceed 0.5. In an election with 5
candidates, 1000 voters are needed for the probability to exceed 0.2.
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Figure 4.7 are some illustrations form = 3 andm = 5:
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Figure 4.6: Lower bound on PIC(E
3
n) with respect to n from Theorem 49
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Figure 4.7: Lower bound on PIC(E
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n) with respect to n from Theorem 49
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4.4 . Possible and Necessary Winner Problems

The situation analyzed in the previous section, where no deviation can oc-
cur from the initial ballot profile, is an extreme case of a scenario with a neces-
sary iterativewinner. In this section, we aim to go further on the recognition of
scenarios where given candidates are possible or necessary iterative winners,
by investigating the complexity of the associated existence problems. More
precisely, we will study the following decision problem PossibleIterativeWin-
ner (resp., NecessaryIterativeWinner): Given an election (N,M,P,▷) and a
candidate x ∈M , is x a possible (resp., necessary) iterative winner?

First of all, the two problems turn out to be equivalent when the initial
potential winner set is limited to at most two candidates.
Proposition 50. PossibleIterativeWinner and NecessaryIterativeWinner are
equivalent and can be solved in polynomial time when |PW 0| ≤ 2.

Proof. If |PW 0| = {x} then, by Observation 37, x is the unique possible–and
thus necessary–winner.

If PW 0 = {x, y} with x = w0 then, by Observation 37, only x or y can
be iterative winners. Since voters can only deviate to favor x or y and voters
in Nx ∪ Ny have no incentive to deviate, candidate x (resp., y) is the unique
possible–and thus necessary–iterative winner iff |(N \ (Nx∪Ny))x≻y| ≥ |(N \
(Nx ∪Ny))y≻x| (resp., |(N \ (Nx ∪Ny))y≻x| > |(N \ (Nx ∪Ny))x≻y|).

Note that the equivalence between the two problems does not hold start-
ing with three candidates in the initial potential winner set. Let us illustrate
that through the following example.
Example 26. Consider the following preference profile with n = 3 voters and
m = 3 candidates where x1 ≻1 x2 ≻1 x3, x2 ≻2 x3 ≻2 x1, and x3 ≻3 x2 ≻3 x1,
and a is the initial winner. If voter 2 (resp., voter 3) first deviates then x3 (resp.,
x2) is the iterative winner. It follows that x2 and x3 are the two possible iterative
winners, but none of them is a necessary iterative winner.

In addition of the non-equivalence of the two problems, even their com-
plexity class differs. We first establish below that the necessary iterative win-
ner problem can be solved in polynomial time.
Theorem 51. NecessaryIterativeWinner is in P.
Proof. We will provide a polynomial number of conditions, which can be
checked in polynomial time, on the preference profile P to determine
whether a given candidate y is a necessary winner. We distinguish the cases
where y is the initial truthful winner w0 or not.
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Is candidate y ̸= w0 a necessary winner? Trivially, by Observation 37,
if y /∈ PW 0, then she is not a possible, and thus not a necessary iterative win-
ner. Therefore, we assume from now on that y ∈ PW 0. Let us give some
necessary conditions for y to be a potential winner along each possible devi-
ation sequence:

(i) For all z ∈ PW 0 \ {w0, y} and all i ∈ Ny , we have x ≻i z: Otherwise,there exists a candidate z ∈ PW 0 \{w0, y} and a voter i ∈ Ny such that
z ≻i x. There exists then a deviation sequence where i is the first voterto deviate, and she will do so from her initial ballot for y to a ballot
for z. It follows from Observation 38 that y is not a potential winner
anymore after this first step and thus, by Observation 37, y will not be
the iterative winner in this deviation sequence, implying that y is not a
necessary iterative winner.

(ii) Assume that (i) holds. For every candidate z1 ∈ M \ {w0, y} and voter
i ∈ N z1 , we must have either w0 ≻i z for every z ∈ PW 0 \ {w0, z1}, or
y ≻i w

0. Otherwise, there exist a candidate z1 ∈M \{w0, y}, a potential
winner z2 ∈ PW 0 \ {w0, y, z1} and a voter i ∈ N z1 such that z2 ≻i z, forevery z ∈ PW 0 \{z1, z2}. There exists then a deviation sequence where
i is the first voter to deviate, and she will do so from her initial ballot for
z1 to a ballot for z2 (that she prefers to w0). Since w0 was the initial
winner, she is still a potential winner after this deviation. Therefore,
there exists a second deviation in which a voter j ∈ Ny deviates from
her initial ballot for y to a ballot forw0 (that she prefers over all potential
winners other than y, by (i)). Thus, by Observations 37 and 38, y will not
be the iterative winner in this deviation sequence, implying that y is not
a necessary iterative winner.

Assume that the conditions (i) and (ii) hold, and let us look closer to point
(ii) where there are two cases to distinguish:

• If, for every candidate z1 ∈ M \ {w0, y} and voter i ∈ N z1 , we have
w0 ≻i z for every z ∈ PW 0 \ {w0, z1}, then no deviation can occur. It
follows that the initial winner w0 will be the unique possible–and thus
necessary–iterative winner, implying that y cannot be a necessary iter-
ative winner.

• Otherwise, there exist a candidate z1 ∈M \ {w0, y} and a voter i ∈ N z1

such that y ≻i w0. In that case, by Observation 39, y is the unique
possible–and thus necessary–iterative winner iff

|(
⋃

z∈M\{w0,y}

N z)y≻w0 | > |(
⋃

z∈M\{w0,y}

N z)w
0≻y|
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Is candidate w0 a necessary winner? If, for every candidate z1 ∈ M \
{w0} and voter i ∈ N z1 , we have w0 ≻i z for every z ∈ PW 0 \ {w0, z1}, thenno deviation can occur and w0 is a necessary winner. Therefore, we assume
from now on that there exists a candidate z1 ∈M \ {w0}, a voter i ∈ N z1 and
a candidate z2 ∈ PW 0 \ {w0, z1} such that z2 ≻i w

0, i.e., there is a voter with
an incentive to deviate from the initial truthful profile b0.

For a candidate y ∈ PW 0 \ {w0}, let PW 1,y ⊆ PW 0 denote the set of
potential winners in the strategy profile b1,y resulting from a best response
electing candidate y, where a voter changes her initial ballot to a ballot for
y, performed from the initial truthful profile b0. Suppose that there exist a
candidate z1 ∈ M \ {w0}, a potential winner z2 ∈ PW 0 \ {w0, z1}, a voter
i ∈ N z1 such that z2 ≻i z for every z ∈ PW 0\{z1, z2}, a candidate y ∈ PW 1,z2\
{w0, z2} and a voter j ∈ Nw0 such that y ≻i z for every z ∈ PW 1,z2 \ {w0, y}.
It means that there exists a deviation sequence where voter i is the first voter
to deviate and she does so from her initial ballot for z1 to a ballot for z2 (thatshe prefers to w0), and then voter j is the second voter to deviate and she
does so from her initial ballot for w0 to a ballot for y (that she prefers to the
current winner z2). It follows from Observations 37 and 38 that w0 will not
be the iterative winner in this deviation sequence, implying that w0 is not a
necessary iterative winner. Therefore, we assume from now on that, for every
candidate z1 ∈M \ {w0}, potential winner z2 ∈ PW 0 \ {w0, z1}, voter i ∈ N z1

such that z2 ≻i z for every z ∈ PW 0 \{z1, z2}, we have all voters j ∈ Nw0 who
prefer z2 over all potential winners in PW 1,z2 \ {w0, z2}.

Let Z denote the set of all potential winners to which there is a voter who
has an incentive to deviate and A(y) the set of voters having an incentive to
deviate to y ∈ Z , i.e., Z := {y ∈ PW 0 \ {w0} : ∃z1 ∈ M \ {w0, y}, i ∈
N z1 s.t. y ≻i z, ∀z ∈ PW 0 \ {y, z1}} and A(y) := {i ∈ N : ∃z1 ∈ M \
{w0} s.t. i ∈ N z1 , y ≻i z, ∀z ∈ PW 0\{y, z1}}. By definition, we have |A(y)| >
0 for every y ∈ Z. If |Z| = 1 with Z = {y}, then the only first deviations
that can occur are towards candidate y and no further deviation can then
occur for a candidate different from w0 or y and, by assumption, voters in
Nw0 are satisfied by both candidates w0 and y and thus do not deviate. It
follows that w0 is the unique possible–and thus necessary–iterative winner
iff (
⋃

z∈M\{w0,y}N
z)w

0≻y ≥ (
⋃

z∈M\{w0,y}N
z)y≻w0 . Let us thus assume, from

now on, that |Z| > 1.
By assumption, for every potential winner z ∈ Z , every voter j ∈ Nw0

prefers z to any other potential winner y ∈ Z ∩ PW 1,z . It follows that, for
every candidates z1, z2 ∈ Z such that z1 ̸= z2, we have either z1 /∈ PW 1,z2

or z2 /∈ PW 1,z1 . Note that both cannot hold simultaneously because for z2 /∈
PW 1,z1 to hold, since z2 ∈ PW 0, we need that z1▷z2 or that z2▷w0▷z1 while
z2 has one vote less than both z1 and w0 in the initial scores; under either
condition z1 is still a potential winner in the ballot profile b1,z2 resulting from

99



a best response from the truthful initial profile where z2 gets one additionalvote. Consequently, for every z1, z2 ∈ Z , we have either z1 /∈ PW 1,z2 and
z2 ∈ PW 1,z1 and all voters in Nw0 prefer z1 to z2, or z2 /∈ PW 1,z1 and z1 ∈
PW 1,z2 and all voters in Nw0 prefer z2 to z1. We can thus assume, w.l.o.g.,
that Z = {z1, . . . , zℓ}, with zt /∈ PW 1,zt′ , zt′ ∈ PW 1,zt , and zt ≻j zt′ for everyvoter j ∈ Nw0 and every 1 < t < t′ < ℓ.

For given indices t1 < t2 < t3 ∈ [ℓ], let At2,t3(t1) denote the set of votersin A(zt1) who prefer zt2 to w0 and to zt for all t3 ≤ t ≤ ℓ, i.e., At2,t3(t1) :=

{i ∈ A(zt1) : zt2 ≻i w0 and zt2 ≻i zt, ∀t3 ≤ t ≤ ℓ}. If there exist t, t′ ∈
[ℓ] such that t < t′ with |A(zt) ∪ ⋃t′′∈[t′−1]A

t,t′(t′′)| > 1, then there exists a
deviation sequence where a voter i1 ∈ A(zt) first deviates to a ballot for zt,then a voter j ∈ A(zt′) deviates to a ballot for zt′ , and another voter i2 ∈
A(zt) ∪

⋃
t′′∈[t′−1]A

t,t′(t′′) then deviates to a ballot for zt, creating a gap too
important between the score of the current winner and the score ofw0, which
thus cannot be a potential winner anymore. Consequently, byObservation 37,
w0 will not be the iterative winner in this deviation sequence, implying thatw0

is not a necessary winner.
Otherwise, it means that, for every candidate zt ∈ Z , all voters in A(zt)prefer zℓ or w0 to every zt′ ∈ Z \ {zt, zℓ} (if not, |At′,ℓ(t)| > 0, and the previ-

ous condition would hold). Since, by definition, all voters in N \
⋃

t∈[ℓ−1]A(zt)prefer w0 to all candidates in Z , it follows that w0 will be the unique
possible–and thus necessary–iterative winner iff (

⋃
z∈M\{w0,zℓ}N

z)w
0≻zℓ ≥

(
⋃

z∈M\{w0,zℓ}N
z)zℓ≻w0 .

In contrast, the possible iterative winner problem is NP-complete.
Theorem 52. PossibleIterativeWinner is NP-complete.
Proof. The problem belongs to NP because, given a sequence of voter strate-
gic deviations, we can check in polynomial time whether it is valid and even-
tually elects a target candidate t at equilibrium because the length of such a
sequence is polynomially bounded (see Theorem 36).

For hardness, we perform a reduction from Exact Cover by 3-Sets (X3C), a
problem known to be NP-complete [Garey and Johnson, 1979]. In an instance
of X3C, we are given a setX = {x1, x2, . . . , x3q} and a set S = {S1, S2, . . . , Sr}of 3-element subsets of X and we ask whether there exists an exact cover,
i.e., a subset S′ ⊆ S of size |S′| = q such that every element of X occurs in
exactly one member of S′, in other words, S′ is a partition ofX . We consider
the variant of the problem, that is still hard, where each element xi occurs inexactly three subsets of S, implying that r = 3q.

For each element xi ∈ X , we create a corresponding element-candidate
yi. For each subset Sj ∈ S, we create one candidate dj and three subset-
candidates s1j , s2j , and s3j associated with the three elements of subset Sj . For
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each ℓ ∈ [2q], we create an candidate zℓ, supposed to correspond to the 2q

elements of S which are not chosen for the partition of X . We additionally
create five candidates, namely a, b, c, e, and t. The tie-breaking rule is given
by the following linear order over the candidates: a▷ b▷ c▷ z1 ▷ · · ·▷ z2q ▷
y1 ▷ · · ·▷ y3q ▷ t▷ d1 ▷ · · ·▷ d3q ▷ e▷ s11 ▷ s21 ▷ s31 ▷ · · ·▷ s13q ▷ s23q ▷ s33q.For each element xi ∈ X , we create 3q element-voters Y ℓ

i , for ℓ ∈ [3q],
whose preferences are as follows for each i ∈ [3q], where sℓ(xi) stands forthe subset-candidate skj such that the kth element of subset Sj is the ℓth oc-
currence of element xi, when ℓ ∈ [3]:

Y ℓ
i : yi ≻ sℓ(xi) ≻ a ≻ t ≻ [. . . ] if ℓ ∈ [3]

Y ℓ
i : yi ≻ a ≻ t ≻ [. . . ] if 4 ≤ ℓ ≤ 3q

For each ℓ ∈ [2q], we create 3q voters Zj
ℓ , for j ∈ [3q], with the following

preferences:
Zj
ℓ : zℓ ≻ c ≻ y1 ≻ · · · ≻ y3q ≻ s1j ≻ s2j ≻ s3j ≻ dj ≻ a ≻ t ≻ [. . . ]

To allow all candidates to be potential winners, we create the voters Aℓ,
Bℓ, Cℓ, Dℓ

j , Eℓ, Sℓ
j,k, and T ℓ, for j, ℓ ∈ [3q] and k ∈ [3], with the following

preferences:
Aℓ: a ≻ b ≻ t ≻ [. . . ]
Bℓ: b ≻ a ≻ t ≻ [. . . ]
Cℓ: c ≻ e ≻ a ≻ t ≻ [. . . ]
U ℓ: u ≻ a ≻ t ≻ [. . . ]for (U, u) ∈ ⋃j∈[3q]{(Dj , dj), (Sj,k, s

k
j )} ∪ {(E, e)}

T ℓ: t ≻ a ≻ b ≻ [. . . ]

We finally create an candidate f and a voter F with the following prefer-
ences:

F : f ≻ z1 ≻ · · · ≻ z2q ≻ y1 ≻ · · · ≻ y3q ≻ t ≻ a ≻ b ≻ [. . . ]

By construction, in the truthful initial profile, there are exactly 3q votes
for each candidate except f , and thus candidate a is winning, thanks to the
tie-breaking rule.

We claim that there exists a subset S′ ⊆ S which is a partition of X iff
there exists a sequence of voter strategic deviations which leads to the victory
of candidate t.
=⇒ : Suppose first that there exists a subset S′ ⊆ S which is a partition of
X , say S′ = {Sj′1

, . . . , Sj′q} where j′1 < · · · < j′q. By definition, each element xiis covered by exactly one element of S′, say that xi is covered by the element
of S′ which contains the kthi occurrence of element xi, for ki ∈ [3]. We will
thus let voter Y ki

i deviate to subset-candidate ski(xi). We will schedule these
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deviations with respect to the tie-breaking order ▷, i.e., voter Xki
i deviates

before voterXki′
i′ , with skj := ski(xi) and sk

′
j′ := ski′ (xi′), iff j > j′, or j = j′ and

k > k′. It follows that each candidate yi loses one vote, while each candidate
skj′ℓ

gains one vote, for each ℓ ∈ [q] and k ∈ [3], by decreasing order of indices.
Then, voter C1 deviates from her vote for candidate c to a vote for can-

didate e, and thus c loses one vote. It follows that none of the candidates
y1 . . . , y3q and c are potential winners anymore, nor are any of the subset-
candidates associated with elements of S \ S′.

Let us consider the set of non-chosen elements of S, i.e., S \ S′ =

{Sj1 , . . . , Sj2q} where j1 < · · · < j2q. For ℓ = 2q to ℓ = 1, we let voter Zjℓ
ℓdeviate from candidate zℓ to candidate djℓ . This is a best response becausenone of the candidates y1 . . . , y3q , c, and s1jℓ , s2jℓ and s3jℓ are potential winners.Afterwards, voter F deviates from her vote for candidate f to a vote for

candidate t. This is a best response because none of the candidates z1, . . . , z2qand y1, . . . , y3q are potential winners. Now let voter A1 deviate from her vote
for candidate a to a vote for candidate b. It follows that candidate a is not a
potential winner anymore. If we then let, e.g., voterD1

1 deviate from her vote
for candidate d1 to a vote for candidate t, then b and t are the only remaining
potential winners, with 3q + 1 and 3q + 2 votes, respectively, while the other
candidates which are less (resp., more) favored than t (resp., except b) have at
most 3q + 1 (resp., 3q − 1) votes. Since there are more voters preferring t to b

than the reverse, among the voters who do not currently vote for any of them,
it thus leads to a sequence of voter deviations eventually electing candidate t
at the equilibrium.
⇐= : Suppose now that there exists a sequence of voter strategic devi-
ations which leads to the victory of candidate t. First observe that, since all
candidates (except f ) have initially the same score, any iterative winner must
gain at least one vote and thus must have at least 3q + 1 votes. Therefore,
candidate t must gain at least one vote. Since candidates a, b, c, z1, . . . , z2q ,
y1, . . . , y3q are more favored by the tie-breaking order▷ than t, none of them
can gain a new vote before t gets one, because otherwise t would not be a
potential winner anymore. All voters prefer a to t, except voters T ℓ, who al-
ready vote for t, and voter F . Moreover, the only possibility for a to not be
a potential winner before t can gain one vote, would be that some voter Aℓ

deviates, and the only possible deviation would be towards b, a contradiction.
Therefore, we need that voter F deviates to t, and this is the only possible first
deviation to t.

However, voter F prefers all candidates z1, . . . , z2q and y1, . . . , y3q , initiallypotential winners, to candidate t. Therefore, we need for F to deviate to t as
a first deviation to t, that none of the candidates z1, . . . , z2q and y1, . . . , y3q arepotential winners, while t is still a potential winner. The only possible way to
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achieve this situation, is that every candidate zℓ and yi, for ℓ ∈ [2q] and i ∈ [3q],
loses at least one vote.

Therefore, we need that at least one voter Y ℓ
i , for some ℓ ∈ [3q], deviates

from her current vote for yi, for each i ∈ [3q]. The only possible deviation
which can still enable the future election of t is by a voter Y k

i for k ∈ [3] to-
wards sk(xi). Let us construct the subset S′ ⊆ S such that all elements of S′

correspond to subset-candidates sk(xi) to which some voter Y k
i deviates to,

so that yi is not a potential winner anymore, for each i ∈ [3q]. By definition of
sk(xi), it follows that S′ covers all elements ofX .

We also need that at least one voter Zj
ℓ , for some j ∈ [3q], deviates from

her current vote for zℓ, for each ℓ ∈ [2q]. To enable the first deviation of F
to t, such a voter Zj

ℓ should not deviate to c or y1, . . . , y3q , and thus none of
these candidates should be a potential winner. It follows that all previously
described deviations of voters Y ℓ

i should occur before those of Zj
ℓ . Moreover,

the only possibility for c not being a potential winner anymore is that it loses
one vote, with a deviation by a voter Cℓ, for some ℓ ∈ [3q]. Such a voter must
deviate to candidate e. Then, by the tie-breaking order, none of the subset-
candidates not chosen for deviation by voters Y ℓ

i can be a potential winner
anymore. Voter Zj

ℓ can thus deviate to a subset-candidate skj for k ∈ [3]which
has previously been chosen for deviation by a voter Y ℓ

i or, if none of them
has been chosen, to candidate dj if not already the winner. However, it is notpossible for the future election of t that Zj

ℓ deviates to a subset-candidate skjor to a candidate dj which has already gained votes because, otherwise, suchcandidateswould get at least 3q+2 votes and twould not be a potential winner
anymore. It follows that each such voter Zj

ℓ deviates to a different candidate
dj , and that no subset-candidate skj , associated with the same element Sj ∈ S,
has been chosen for deviation by voters Y ℓ

i . Since there are 2q different such
voters Zj

ℓ associated with different elements Sj ∈ S which are not part of S′,
it means that |S′| = q and thus it is an exact cover ofX .

Now that we have investigated whether an arbitrary candidate can be a
possible or necessary iterative winner, it makes sense to focus on particularly
desirable candidates.

4.5 . About Electing the Condorcet Winner

Since electing the Condorcet winner is a desirable property for a voting
rule, we now investigate the ability of the iterative voting process to elect it.

4.5.1 . The Condorcet Winner as an Iterative Winner
If a Condorcet winner exists, the natural question is whether she is guar-

anteed to be a possible or even a necessary iterative winner. We first study
the question of a necessary iterative winner.
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Proposition 53. Ifm = 3 and the Condorcet winner is the initial winner, then she
is also a necessary iterative winner.

Proof. Let c∗ be the Condorcet and initial winner. If no strategic move can be
performed, we are done. Otherwise, the first strategic move of each devia-
tion sequence cannot be neither towards nor from c∗, and by Observation 38,
there are at most two potential winners after this move, c∗ being one of them.
Observation 39 implies that c∗ is the winner of each sequence, hence the nec-
essary winner.

The following example shows that if the Condorcet winner is not initially
winning, then she is not guaranteed to be the necessary iterative winner, even
ifm = 3.
Example 27. Let us consider the profile P = {x2 ≻1 x3 ≻1 x1, x1 ≻2 x2 ≻2

x3, x3 ≻3 x2 ≻3 x1} where x2 is the Condorcet but not initial winner (x1 initially
wins by tie-breaking), and PW 0 = M . If voter 1 deviates from x2 to x3, we get
PW 1 = {x1, x3}. Since x2 /∈ PW 1, she cannot win in this deviation sequence,
therefore, she is not the necessary winner.

Similarly, the following example shows that ifm > 3, then the Condorcet
winner is not guaranteed to be the necessary iterative winner, and this is true
even if she is the initial winner:
Example 28. Let us consider the profile P = {x4 ≻1 x3 ≻1 x1 ≻1 x2, x1 ≻2

x4 ≻2 x3 ≻2 x2, x3 ≻3 x2 ≻3 x4 ≻3 x1, x2 ≻4 x3 ≻4 x1 ≻4 x4, x4 ≻5

x1 ≻5 x2 ≻5 x3} with x4 the Condorcet and initial winner, and PW 0 = M . Let
us exhibit a deviation sequence in which x4 is not winning. First, voter 4 deviates
from x2 to x3, making x3 the current winner and PW 1 = {x1, x3, x4}. Then voter
5 deviates from x4 to x1, yielding PW 2 = {x1, x3}. Since x4 /∈ PW 2, she cannot
win in this deviation sequence and is not the necessary winner.

On the other hand, the Condorcet winner is always guaranteed to be a
possible iterative winner:
Proposition 54. If the Condorcet winner is an intial winner of the truthful ballot
b0 (given a profile P ), then she is a possible iterative winner.

Proof. Let c∗ be the Condorcet winner of given profile P , c∗ ∈ PW 0. We
show by construction that there exists a deviation sequence ⟨b0, b1, . . . , br⟩ ∈
DS(P) such that wr = c∗.

If |PW 0| ≤ 2, then, by Theorem 40, c∗ is a necessary and thus possible
winner. Let us assume from now that |PW 0| ≥ 3. In order to build a deviation
sequence in which c∗ is elected, we repeatedly use Observation 38 to rule out
potential winners one by one, until we reach the situation where there are
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only two potential winners including c∗ (hence, c∗ is guaranteed to be elected).
For each iteration t of the deviation sequence,

If no strategic move is possible, we are done. Let us now assume the op-
posite. If there exists a voter i such that bti = x ∈ PW t, and y ∈ PW t

i suchthat y ≻i c
∗, then i can change her ballot for x to a ballot for y, and by Obser-

vation 38, x /∈ PW t+1. Otherwise, each voter casting her ballot for a potential
winner at iteration t prefers c∗ to any other potential winner. Then only FNPW
moves are possible. Let j be a voter such that btj = z /∈ PW t, and y ∈ PW t

jsuch that y ≻j c∗. Then j can change her ballot for z to a ballot for y. If
after this FNPW move, PW t+1 = {y, c∗}, c∗ is a necessary (and thus possi-
ble) winner. Otherwise, there exists a candidate x ∈ PW t+1, and we have
assumed that each voter of x prefers c∗ over all the other potential winners
(different from x). In particular, there is a voter k such that bt+1

k = x who
prefers c∗ to the current winner y. k will then move to c∗, and by Observa-
tion 38, x /∈ PW t+2.

4.5.2 . Condorcet Efficiency of the Iterative Rule
We have previously examined the conditions under which a Condorcet

winner is a necessary or possible iterative winner. In this section, we go fur-
ther by investigating how the iterative voting process affects the probability
of electing the Condorcet winner.

More formally, we model iterative voting (under plurality) as a random-
ized voting rule, called randomized iterative plurality. Given the initial truthful
score vector s ∈ Imn , we enumerate all possible deviation sequences and de-
fine the outcome as a probability distribution πs over candidates, where for
each x ∈M , πs(x) denotes the proportion of sequences in which x is elected.
Any branch has the same weight whatever its length. In particular, for a given
score vector s, a candidate x is a possible iterative winner iff πs(x) > 0, and a
necessary iterative winner iff πs(x) = 1. Note that this is not the only way to
fairly weight branches, as we could also distribute the weight equally among
the subbranches.

For any given voting rule, the Condorcet efficiency (CE) is defined as the
probability of electing the Condorcet winner when one exists:
Definition 18 (Condorcet efficiency). When the Condorcet winner exists, we de-
fine the Condorcet efficiency as the probability to elect the Condorcet winner with
respect to a voting rule.

Note that for plurality, the Condorcet efficiency corresponds to PC(c
∗ =

WP (b
0) | c∗ exists) while the Condorcet efficiency under randomized itera-

tive plurality corresponds to PC(c
∗ = WP (b

r) | c∗ exists), for any deviation
sequence ⟨b0, . . . , br⟩. To study whether the iterative voting increases the
Condorcet efficiency it remains thus to study the sign of the value ∆CE =

PC(c
∗ =WP (b

r) | c∗ exists)− PC(c
∗ =WP (b

0) | c∗ exists).
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This question has already been studied empirically by Grandi et al. [2013].
However, it has been done for a particular turn function which arbitrarily se-
lects the voter allowed to deviate at each step. In contrast, our proof does not
assume any turn function and considers all possible deviation sequences, via
randomized iterative plurality.

In practice, we draw a preference profile under a certain culture C , and
denote byC∗, similarly as Gehrlein and Lepelley [2010], the culture associated
with C that is reduced to preference profiles where the Condorcet winner
exists.
Lemma 55. Let C be a culture and c∗ the Condorcet winner, when c∗ exists, we
have the following decomposition: ∆CE = PC∗(c∗ =WP (b

r) ∩ c∗ ̸=WP (b
0))−

PC∗(c∗ ̸=WP (b
r) ∩ c∗ =WP (b

0)).

Proof.
∆CE = PC∗(c∗ =WP (b

r))− PC∗(c∗ =WP (b
0))

= PC∗(c∗ =WP (b
r) ∩ c∗ =WP (b

0))

+PC∗(c∗ =WP (b
r) ∩ c∗ ̸=WP (b

0))

−PC∗(c∗ =WP (b
0) ∩ c∗ =WP (b

r))

−PC∗(c∗ =WP (b
0) ∩ c∗ ̸=WP (b

r))

= PC∗(c∗ =WP (b
r) ∩ c∗ ̸=WP (b

0))

−PC∗(c∗ ̸=WP (b
r) ∩ c∗ =WP (b

0))

Lemma 55 enables us to simplify the computation of the difference in the
Condorcet efficiency. We now use this result to prove the increase in Con-
dorcet efficiency under the Impartial Anonymous Culture (IAC) assumption.
Theorem 56. Under IAC, the iterative voting process increases the Condorcet ef-
ficiency of plurality for anym, and n sufficiently larger thanm.

Proof. To prove that∆CE > 0 whenever c∗ exists, it suffices by Lemma 55 to
show that

PIAC(c
∗ =WP (b

r) ∩ c∗ ̸=WP (b
0) | c∗ exists)

> PIAC(c
∗ ̸=WP (b

r) ∩ c∗ =WP (b
0) | c∗ exists)

To simplify the notations, we denote PIAC(· | c∗ exists) by PIAC∗(·). Also,
to shorten formulas and thus improve the readability of the proof, we use
interchangeably the notations {|PW 0(s)| = k} (resp. |PW 0| = k) and s ∈ Sk.
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Upper bound onPIAC∗(c∗ ̸=WP (b
r) ∩ c∗ =WP (b

0)): Wefirst note that
{c∗ ̸= WP (b

r) ∩ c∗ = WP (b
0)} ⊂ {∪mk=4S

k
n}. Indeed, if s(b0) ∈ Si

n for i ≤ 2,
then by Theorem 40, c∗ =WP (b

r). By Theorem 53, we also have c∗ =WP (b
r)

when s(b0) ∈ S3
n and c∗ =WP (b

0). Therefore,
PIAC∗(c∗ ̸=WP (b

r) ∩ c∗ =WP (b
0))

⩽ PIAC∗(∪mk=4{|PW 0| = k}) =
m∑
k=4

PIAC∗(|PW 0| = k)

The last equality is obtained because {|PW 0| = k}4⩽k⩽m is a partition.
Lower bound on PIAC∗(c∗ =WP (b

r) ∩ c∗ ̸=WP (b
0)):

We have:
PIAC∗(c∗ =WP (b

r) ∩ c∗ ̸=WP (b
0)) ⩾

⩾ PIAC∗(c∗ =WP (b
r) ∩ c∗ ̸=WP (b

0) ∩ s ∈ S2)

= PIAC∗(c∗ =WP (b
r) ∩ c∗ ̸=WP (b

0) | s ∈ S2)

· PIAC∗(s ∈ S2)

⩾ PIAC∗(c∗ =WP (b
r) ∩ c∗ ̸=WP (b

0) ∩ c∗ ∈ PW 0(s) | s ∈ S2)

· PIAC∗(s ∈ S2) ⩾

⩾ PIAC∗(c∗ =WP (b
r) ∩ c∗ ̸=WP (b

0) | c∗ ∈ PW 0(s), s ∈ S2)

· PIAC∗(c∗ ∈ PW 0(s) | s ∈ S2) · PIAC∗(s ∈ S2)

Let us now look closer to the two first terms of the last product:
(i) PIAC∗(c∗ =WP (b

r) ∩ c∗ ̸=WP (b
0) | c∗ ∈ PW 0(s), s ∈ S2):

As the distribution over scores is uniform under IAC, if PW 0 = {c, c′},
then each of these two candidates has the sameprobability to be the ini-
tial winner. In other words, PIAC(c = Wp(b

0)) = PIAC(c
′ = Wp(b

0)) =
1
2 . Under IAC∗, the distribution over scores is biased in favor of the
Condorcet winner c∗ - we have

PIAC∗(c∗ ̸= Wp(b
0) | c∗ ∈ PW 0(s), s ∈ S2) =

1

2
− ϵ,

with ϵ going to 0 when n grows and m is fixed. In addition, under as-
sumptions that s ∈ S2 and c∗ ∈ PW 0(s), by Theorem 40, c∗ is the
necessary winner, thus

{c∗ =WP (b
r) ∩ c∗ ̸=WP (b

0)} = {c∗ ̸=WP (b
0)}

and hence
PIAC∗(c∗ =WP (b

r) ∩ c∗ ̸=WP (b
0) | c∗ ∈ PW 0(s), s ∈ S2) =

=
1

2
− ϵ.
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(ii) PIAC∗(c∗ ∈ PW 0(s) | s ∈ S2):
Again by the uniformity of scores under IAC, we have, for any m and
any candidate c, for any m, PIAC(c ∈ PW 0(s) | s ∈ S2) = 2

m . Indeed,among the (m2 ) equally likely pairs of potential winners, c appears in
m− 1 of them. Under IAC∗, this distribution is again biased in favor of
the Condorcet winner c∗, which yields

PIAC∗(c∗ ∈ PW 0(s) | s ∈ S2) ⩾
2

m

Put together, we get:
PIAC∗(c∗ =WP (b

r) ∩ c∗ ̸=WP (b
0))

⩾ (
1

2
− ϵ) · 2

m
· PIAC∗(s ∈ S2)

Intermediate step: Implication between IAC and IAC∗: To con-
clude the proof, we now need to prove that:

m∑
k=4

PIAC∗(s ∈ Sk) ⩽ (
1

2
− ϵ) · 2

m
· PIAC∗(s ∈ S2) (4.1)

As working directly under the IAC∗ distribution seems challenging, we will
rather prove the analogous inequality under IAC:

m∑
k=4

PIAC(s ∈ Sk) ⩽ (
1

2
− ϵ) · 2

m
· PIAC(s ∈ S2) (4.2)

We can actually prove that Equation (4.2) implies Equation (4.1). Indeed, let us
assume that Equation (4.2) holds. We note that

PIAC(c
∗ exists | s ∈ ∪k⩽4S

k) ⩽ PIAC(c
∗ exists | s ∈ S2)

since the probability of Condorcet winner existence increases as the score
becomes unbalanced. Therefore, we obtain

m∑
k=4

PIAC(s ∈ Sk) · PIAC(c
∗ exists | ∪k⩽4 S

k)

⩽ (
1

2
− ϵ) · 2

m
· PIAC(s ∈ S2) · PIAC(c

∗ exists | s ∈ S2)

Dividing by PIAC(c
∗ exists), we get:∑m

k=4PIAC(s ∈ Sk) · PIAC(c
∗ exists | ∪k⩽4 S

k)

PIAC(c
∗ exists)
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⩽
(12 − ϵ) · 2

m · PIAC(s ∈ S2) · PIAC(c
∗ exists | s ∈ S2)

PIAC(c
∗ exists)

By the conditional Bayes’ formula, we end up having:
m∑
k=4

PIAC(s ∈ Sk | c∗ exists)

⩽ (
1

2
− ϵ) · 2

m
· PIAC(s ∈ S2 | c∗ exists)

which is nothing but Equation (4.1):
Putting the bounds together under IAC: It remains to prove that
Equation (4.2) holds. Using Lemma 46, we get:∑m−4

k=0 (m− k) ·
(
n+k−2

k

)(
n+m−1
m−1

)
⩽ (

1

2
− ϵ) · 2

m

2 ·
(
n+m−4
m−2

)(
n+m−1
m−1

)
After some algebraic simplifications, using the identity

k ·
(
n+ k − 2

k

)
= (n− 1) ·

(
n+ k − 2

k − 1

)
,

and performing a change of variable, we obtain:

m ·
m−4∑
k=0

(
n+ k − 2

k

)
− (n− 1) ·

m−5∑
k=0

(
n+ k − 1

k

)

⩽ (
1

2
− ϵ) · 2

m

2 ·
(
n+m−4
m−2

)
m

Using the following inequality (that can be easily proven by mathematical
induction)

M∑
k=0

(
A+ k

k

)
=

(
A+M + 1

M

)
withA = n−2 andM = m−4 for the first sum andA = n−1 andM = m−5

for the second, we get:
m ·

(
n+m− 5

m− 4

)
− (n− 1) ·

(
n+m− 5

m− 5

)

⩽ (
1

2
− ϵ) · 2

m

2 ·
(
n+m−4
m−2

)
m
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In other words:
m2 ·

(
n+m− 5

m− 4

)
−m · (n− 1) ·

(
n+m− 5

m− 5

)

⩽ (
1

2
− ϵ) · 2

m
2 ·
(
n+m− 4

m− 2

)
If we increase n, wewill see that the inequality has to become true at some

point. Indeed, ϵ becomes small as n grows and form fixed and n large enough
the left hand side becomes negative thanks to the second term while the sec-
ond is increasing in n and is positive.

We now state the analogous result under impartial culture (IC).
Theorem 57. Under IC, the iterative voting process increases the Condorcet effi-
ciency of plurality for anym, and n sufficiently larger thanm.

Proof. Following the same steps as in the proof of Theorem 56 but for IC, it
remains to show:

m∑
k=4

PIC(s ∈ Sk) ⩽ (
1

2
− ϵ) · 2

m
· PIC(s ∈ S2) (4.3)

Since ϵ is going to 0 when n is large then we can just remove it.
To prove Equation (4.3), we first prove the case of m = 4, and then we

generalize its idea tom > 4.
Case ofm = 4:
We need to prove that

PIC(s ∈ S4) ⩽
1

4
· PIC(s ∈ S2) (4.4)

Let us denote byS4→2 the set of scoreswith 2 potential winners obtained from
some score ofS4 by transferring atmost two votes between candidates. More
formally, S4→2 = {s ∈ S2|∃s′ ∈ S4 such that s differs from s′ in 2 votes}.
Also, for s′ ∈ S4, we denote by S4→2(s′) all scores de S4→2 built from s′,
ie., S4→2(s′) = {s ∈ S2|s differs from s′ in 2 votes}. To prove Equation (4.4),
it is sufficient to prove that for each score s ∈ S4, there exists a function
f4 : S4 −→ [S4→2]8 association each score s ∈ S4 with 8 different scores
from S4→2(s) in a way that:

• ∀s′ ∈ f4(s),PIC(s
′) ⩾ 1

2PIC(s)

• for each couple s, s′ ∈ S4, f4(s) ∩ f4(s′) = ∅.
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We define below the function f4. Let s4 ∈ S4. It remains to find 8 scores
of S4→2(s) such that for each s2 ∈ S4→2(s4), PIC(s2)

PIC(s4)
⩾ 1

2 . We define f4 so that
all scores of f4 are of the two following types:

• Type 1: s2 ∈ f4(s4) was built from s4 by transferring two votes from a
unique candidate j to two different candidates i and k.

• Type 2: s2 ∈ f4(s4) was built from s4 by transferring one vote from
candidates j, l to two remaining candidates i, k

We denote s4 = (s41, s
4
2, s

4
3, s

4
4), s

4 ∈ S4
n, and s2 = (s21, s

2
2, s

2
3, s

2
4), s

2 ∈ S2
n, andwe have We have:

PIC(s
4) =

n!

s41! · s42! · s43! · s44!
(
1

m
)n

and
PIC(s

2) =
n!

s21! · s22! · s23! · s24!
(
1

m
)n.

Let us show that for each of these types, we have PIC(s2)
PIC(s4)

⩾ 1
2 for n sufficiently

large.
• Type 1: in all cases where we don’t change the winner (resp. the winner
changes), |s4j − s4i | ≤ 1 (resp. |s4j − s4i | ≤ 2) and s4k ≥ q − 1 for each
k ∈ {1, 2, 3, 4}.
Then we get:

PIC(s
2)

PIC(s4)
=

s4j (s
4
j − 1)

(s4i + 1)(s4k + 1)
.

The smallest ratio is reached when s4j = q − 1, s4i = q and s4k = q if
we don’t change the winner and for s4j = q + 2, s4i = q and s4k = q + 1

otherwise.
Therefore,

PIC(s
2)

PIC(s4)
⩾

(q − 1)(q − 2)

(q + 1)2

We find this ratio is greater than 1
2 for q ≥ 8, i.e., n ≥ 32.

• Type 2: two votes are transferred from two different candidates j, l to
two different candidates i, k. We get

PIC(s
2)

PIC(s4)
=

(s4j − 1)(s4l − 1)

(s4i + 1)(s4k + 1)
.

The same as in the previous cas, s4p ≥ q − 1 for each p ∈ {1, 2, 3, 4}, and
for each p, p′ ∈ {1, 2, 3, 4}, we have |s4p − s4p′ | ≤ 2. Therefore,

PIC(s
2)

PIC(s4)
⩾

(q − 2)2

(q + 2)2
,
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which is greater than 1
2 for q ≥ 12, ie., n ≥ 48.

We will now build 8 scores of f(s4) as follows:
• We will create 5 scores of type 1, by distinguishing three sub-types:

– 2 scores where the winner of s4 gets onemore vote and the looser
of s4 is not modified. We can then choose arbitrary which of the
two remaining candidates x and y will get one more vote, and
which onewill loose two votes - indeed, each of these both choices
yields a score of two potential winners, namely the winner of s4
and the other candidate that gets one vote.

– 1 scores where the the winner of s4 gets one more vote, the third-
ranked candidate of s4 is not modified, and the second-ranked
candidate looses two votes.

– 2 scores vectors where the winner looses two votes. The candi-
date that is not modified needs to be the third or fourth ranked
candidate of s4 in order to ensure that the resulting score has two
potential winners.

• Finally, we will create 3 more scores of type 2. The winner can not loose
a vote because, depending of the number of votes of remaining candi-
dates, we might reach a score with 3 potential winners. Therefore, the
winner will get one more vote, and we have 3 choices for the second
candidate to get one more vote, each of these yielding a score with 2
potential winners.

Moreover, all scores built by this construction are different, i.e |f4(s)| = 8.
Indeed, when starting from the same winner and adding one to her then the
subtraction part differentiates the score of case 1 and 2.

The last thing to check is that f4(s) ∩ f4(s′) = ∅. It is easy to see that
for all cases where the winner gets one more vote (and in particular remains
the winner), we can not have duplicates. Indeed, every score in S4

n yields a
different winner, so winners will also be different in new scores. In the case
we allow the winner to lose points (only for type 1) then this candidate who is
now outside the potential winner set is last and characterized different new
scores also.
General case: m > 4
We now explain how the construction of f4 can be generalized for anym >

5. Let m = 5, for the case where the number of potential winners is 5, we
can apply the same reasoning and we will have more cases to enumerate.
For instance, for type 1, there is one more candidate that can loose 2 votes.
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Therefore, we can apply exactly the same idea of transformation as previously,
namely f5 : S5 −→ [S5→2]h, where h > 8 and f5(s) ∩ f4(s′) = ∅ because we
start from different scores.

Let us show that h − 8 ≥ 2 to preserve our probability ratio greater than
1
2 . Indeed, in case 2 we are able to build 3 more scores by taking a point
to the fifth candidate, i.e., we now have (32) = 3 choices to subtract a point
to two candidates. The case where this candidate has no vote can be treated
separately. We see that these scores do not intersect. By recurrence, we apply
the same reasoningwhen considering onemore candidate and see that all the
difficulty remains in the case of four potential winners for anym.

These results provide formal guarantees that Condorcet efficiency in-
creases under impartial cultures.

4.6 . Conclusion and Future Works

4.6.1 . Conclusion
In this chapter, we have examined the outcomes of iterative voting for the

plurality rule under different aspects. We have particularly investigated the
potential diversity of outcomes via the concepts of possible and necessary
iterative winners. Although we may find instances where all candidates can
be elected in some sequence of voters’ deviations, we have experimentally
seen that this scenario rarely occurs. Indeed, the most frequent situations
are when a few different candidates turn out to be possible iterative winners.
This is partly due to the existence of a necessary iterative winner, an event
which is itself “biased” by the extreme scenario where no deviation is initially
possible. We show that this extreme situation actually often occurs in our
setting under impartial (anonymous) cultures.

In a computational point of view, the existence problem for a possible it-
erative winner is harder than for the necessary variant. It shows in a way that
the kind of robustness created by the election of the same candidate at every
sequence is easily detectable while more fluctuating scenarios are difficult to
predict. Beyond quantitative or computational results on possible outcomes,
our analysis also helps provide theoretical insights on how beneficial manipu-
lation can be. Indeed, we show that the frequency of election of the Condorcet
winner is increased, when considering all possible iterative sequences with
equal weights, under impartial (anonymous) cultures, compared to the single
outcome of the initial plurality rule. This confirms and generalizes previous
observations that were only made experimentally.

4.6.2 . Future Works
Our work opens several avenues for future work.
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• While we have focused on a specific iterative voting setting, one could
examine the impact of other types of strategic behaviors. Indeed, one of
the main weaknesses of this model is that a voter deviates only when
she is pivotal. A useful way to address this limitation is to consider a
more general model parameterized by the number of voters required
to be pivotal. The idea is that voters may change their ballot when they
are close to being pivotal [Wilczynski, 2019], either in an absolute sense,
such as the number of votes, or in a relative sense, such as the propor-
tion of voters in the election. Thus, one could examine the same type
of question under this strategic behavior, for example.

• Another direction for generalizing this work is to consider different
voting rules. For instance, Condorcet efficiency is the same for all
Condorcet-consistent rules, but one could ask how close positional scor-
ing rules are to being Condorcet-consistent. Nevertheless, one possible
difficulty is to deal with potential problems of convergence [Meir, 2018].

• Another natural direct extension would be to consider other–more
realistic–voting cultures for probabilistic analyses, such as single-
peaked ones, Mallows distributions, or even Polya-Eggenberger
urns [Boehmer et al., 2024]. Following the ideas developed in Chapter 3,
it would not be surprising if adding more structure to the cultures led
to a decrease in the diversity of winners.

• Finally, another more subtle study would be to analyze the strategic
power of the voters (or their coalitions) on the iterative outcome, with
respect to their position of deviation in the sequence or their prefer-
ences. More precisely, this could take the form of a Shapley-Shubik in-
dex adapted to our setting of sequence-dependent winners [Shapley
and Shubik, 1954].

In this chapter, we study how strategic voting affects plurality elections by
analyzing the variability of outcomes under impartial cultures, investigating
the complexity of determining possible and necessary winners, and examin-
ing the impact on Condorcet efficiency. This work represents a first step to-
ward a better understanding of strategic voting, highlighting also the crucial
role of information. Our next question is whether controlling the dissemina-
tion of such information can confer power to the one who broadcast it. We
address this issue in Chapter 5.
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5 - The Influence of Poll Manipulation on Elec-
tions Outcomes

Abstract

In this chapter, we consider the problem of poll manipulation in political
elections. In the context of strategic voting, we are interested in whether a
polling institute can manipulate the information it communicates to voters
in order to influence the outcome of the election. We start with a version of
the problem where the polling institute is allowed to send any score to voters.
Then, for realistic reasons, we investigate a restricted version in which the
polling institute cannot announce scores which are too far from the truthful
ones. While we show that both decision problems are computationally hard,
we go beyond this worst-case complexity analysis by using probabilistic tools
to address the possibility of successful and efficient manipulation in practice,
with respect to several natural preference distributions.

Résumé

Dans ce chapitre, nous étudions le problème de la manipulation des
sondages dans les élections politiques. Dans le contexte du vote stratégique,
nous nous intéressons à la question de savoir si un institut de sondage peut
manipuler les informations qu’il communique aux électeurs afin d’influencer
le résultat de l’élection. Nous commençons par une version duproblèmedans
laquelle l’institut est autorisé à envoyer n’importe quel score aux électeurs.
Puis, pour des raisons de réalisme, nous considérons une version restreinte
dans laquelle l’institut ne peut pas annoncer des scores trop éloignés des
scores réels. Bien que nous montrons que ces deux problèmes de décision
sont computationnellement difficiles, nous allons au-delà de cette analyse en
pire cas en utilisant des outils probabilistes pour étudier la possibilité d’une
manipulation efficace et réussie en pratique, par rapport à plusieurs distribu-
tions naturelles de préférences.

Much of the content of this chapter is based on a paper co-authored with VincentMousseau and Anaëlle Wilczynski, which was accepted at the 27th European Confer-ence on Artificial Intelligence (ECAI 2024) [Mousseau et al., 2024].
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5.1 . Introduction

In this chapter, we study another source of outcomes’ variability arising
from poll information through strategic voting.Indeed, the question of the in-
formation available to the voters is key and has a strong impact on the ma-
nipulability of voting processes [Endriss et al., 2016; Reijngoud and Endriss,
2012], asking the question of the power granted to those who disseminate it,
particularly polling institutes. To deal with partial information in voting, one
can naturally follow a Bayesian approach by considering a probability distri-
bution over a set of possible preference orders for other voters [Myerson and
Weber, 1993; Hazon et al., 2012]. Alternatively, a set of possible preference pro-
files can be derived from partial votes [Conitzer et al., 2011; Dey et al., 2018] or
from a given maximum distance to the voters’ actual preferences [Anand and
Dey, 2021]. Another possibility is to assume local information for the voters,
which is captured by a social network [Grandi, 2017]. Finally, an aggregated
global information coming from opinion polls can be communicated to vot-
ers [Baumeister et al., 2020; Endriss et al., 2016; Reijngoud and Endriss, 2012;
Wilczynski, 2019].

Following this latter line of research, in this chapter, inspired by political
elections, we assume that voters receive only a global information about the
voting intentions within the population, which is communicated through opin-
ion polls. Voters trust the information communicated in the polls and compute
their best response ballot on the basis of this information. This confidence in
the polls grants an important power to the polling institute which dissemi-
nates it, raising the natural question of poll manipulation. Indeed, a polling
institute might have its own interests in the election and try to orient votes
toward them. This problem is close to the question of election control [Fal-
iszewski and Rothe, 2016], where an external agent aims to alter the outcome
of the election, but here no structural change is made on the election. Indeed,
election control examines this issue from a structural perspective, investigat-
ing whether the winner can be modified through the addition or deletion of
candidates or voters.

In the line of seminal works analyzing the complexity of voter manipula-
tion [Bartholdi et al., 1989], one can analyze the complexity of the poll ma-
nipulation problem. However, computational intractability may not consti-
tute a relevant barrier to manipulation, as it relies on worst-case analysis [Fal-
iszewski and Procaccia, 2010]. Therefore, to complement complexity results,
an average-case study using a probabilistic approach is relevant, as it has been
widely investigated for voter manipulation (see, e.g., [Friedgut et al., 2008;
Isaksson et al., 2012; Procaccia and Rosenschein, 2007; Xia and Conitzer, 2008]).
In particular, the asymptotic study is meaningful since political elections are
characterized by a large number of voters. Considering election control prob-
lems, as far as we know, this approach has been surprisingly neglected. A no-
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table exception is a recent work by Xia [2023] which investigates the likelihood
ofmanipulability for several coalition influence problems, including control by
adding or deleting votes. Up to our best knowledge, no such study has been
conducted so far for the poll manipulation problem. In this chapter, we study
the constructive poll manipulation problemwhere the polling institute wishes
to favor a specific candidate by broadcasting manipulated candidates’ scores.
This problem has been introduced by Wilczynski [2019] and further extended
by Baumeister et al. [2020], who also consider the destructive variant where
the polling institute aims to prevent the election of a given candidate. While
both works consider a framework where voters are embedded in a social net-
work and analyze the complexity of the problem with respect to the structure
of the graph, we consider a simpler model with no social network, which clar-
ifies the role of the opinion polls. In particular, we analyze the following two
versions of the problem. In the unrestricted problem, the polling institute is
free to send any score information. The restricted problem considers a more
realistic context where only score information that would be close enough to
truthful scores are allowed. The idea for this second problem is for the polling
institute to lie in a reasonable manner, by submitting realistic scores, not too
far from a ground truth that may correspond to the results of a past election,
or another poll. Such restrictions help to gain the trust and confidence from
the voters. We prove that both versions of the problem are computationally
hard, answering an open question from Baumeister et al. [2020], but also an-
alyze the probability of existence of a successful and efficiently computable
poll manipulation. For this latter purpose, we introduce a natural condition
on statistical cultures which is satisfied by most natural preference distribu-
tions [Szufa et al., 2020]. In fact, we exhibit a simple heuristic and prove its
success for the unrestricted problem, which means that, without restriction,
the polling institute can almost always efficiently influence large elections. For
the restricted manipulation problem, we prove that if the allowed distance is
negligible with respect to the number of voters, then no manipulation is pos-
sible. However, when this distance becomes significant, e.g., when it is a fixed
proportion of the number of voters, easy manipulation is almost always suc-
cessful in large elections. Finally, we show that most results still hold when
assuming a more general strategic behavior for voters [Wilczynski, 2019].

5.2 . A Poll Manipulation Problem

We consider the same iterative voting model as presented in Chapter 2
and used in Chapter 4, namely the one introduced by Meir et al. [2010]. Since
the goal is to study strategic voting in large political elections, we naturally as-
sume that n > m > 2 (by the Gibbard-Satterthwaite theorem, voting rules are
susceptible to manipulation only when there are more than two candidates).
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However, there is a slight difference in this model: we assume that the in-
formation (i.e., the poll) is given at the beginning, after which the strategic
process unfolds and the winner is elected. There are no successive updates
of poll information as in the previous model. Each voter can deviate at most
once since she only gets the information about the scores s provided by the
polling institute, and cannot see the deviations from other voters (thus the or-
der of voters’ deviations does not matter, they could even be simultaneous).
Hence, the deviation process ends after at most n steps; it is then obviously
converging and converges to a final ballot profile denoted by bs. In this model,
a polling institute sends out a score at the beginning of the process and then
each voter votes strategically w.r.t. that information, and finally the winner of
the election is computed.

We recall some notations presented in Chapter 2 to facilitate the reading.
A candidate y is a potential winner for voter i, at a given stepwhere the current
score vector is s, if i believes that voting for y will make candidate y the new
winner, i.e., s−i

WP (s−i)
− s−i

y + 1WP (s−i)▷y ⩽ 1, where s−i denotes the score
vector s without counting the current ballot bi of voter i. Let PW t

i denote theset of potential winners for voter i at step t, and PW t the set of all potential
winners at step t, i.e., PW t :=

⋃
i∈N PW t

i .We then want to describe the behavior of the polling institute who may
have its own interest in the election. Let x∗ be the target candidate of the
polling institute, i.e., it wants x∗ to be elected. Let I be the space of all possible
scores that the polling institute can announce, i.e., I := {s ∈ Nm |

∑m
j=1 sj =

n}.
We consider the following poll manipulation problem by the polling insti-

tute:
Unrestricted manipulation problem

Instance: Election (N,M,P,▷), target candidate x∗ ∈MQuestion: Does there exist a score s ∈ I to announce such thatWP (b
s) =

x∗?
However, the fact that the polling institute is allowed to send any score is

not very realistic. We use a restricted version of the decision problem where
the distance between the truthful poll and the one sent by the polling institute
is bounded. We use the number of vote changes to evaluate the distance be-
tween possible scores, i.e., d(s, s′) = 1

2

∑
j∈M |sj−s′j |, for every scores s, s′ ∈ I .

Note that this distance is equivalent to the restriction of the ℓ1 distance on I

divided by 2 and sometimes called the “earth mover distance" in the litera-
ture [Meir, 2018]. We let Ik := {s ∈ Nm | d(s, sT ) ≤ k and ∑j∈M sj = n}
be the restricted space of action of the polling institute. We then analyze the
following poll manipulation problem by the polling institute:
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Restricted manipulation problem
Instance: Election (N,M,P,▷), target candidate x∗ ∈M , integer kQuestion: Does there exist a score s ∈ Ik to announce such that

WP (b
s) = x∗?

A poll manipulation is illustrated in the next example.

Example 29. Let us consider an election (N,M,P,▷) where N = {1, . . . , 8},
M = {x1, x2, x3, x4, x5}, the tie-breaking ▷ follows the lexicographic order and
the preference profile P is as follows:

1: x1 ≻ x3 ≻ x4 ≻ x5 ≻ x2
2: x5 ≻ x2 ≻ x4 ≻ x3 ≻ x1
3: x1 ≻ x4 ≻ x2 ≻ x3 ≻ x5
4: x1 ≻ x4 ≻ x2 ≻ x3 ≻ x5

5: x2 ≻ x4 ≻ x5 ≻ x3 ≻ x1
6: x2 ≻ x4 ≻ x5 ≻ x3 ≻ x1
7: x3 ≻ x4 ≻ x1 ≻ x2 ≻ x5
8: x4 ≻ x5 ≻ x1 ≻ x2 ≻ x3

The initial truthful scores are given by s0 = (3, 2, 1, 1, 1). If the score commu-
nicated by the polling institute is the truthful one, then no voter has an incentive
to deviate and x1 remains the winner.

Suppose that the polling institute communicates the following score vector
sM = (0, 2, 2, 3, 1), at distance 3 to the truthful one. The set of potential win-
ners w.r.t. sM is equal to PW sM

i = {x2, x3, x4} for every voter i ∈ {1, 2, 3, 4, 8},
while PW sM

5 = PW sM
6 = {x3, x4} and PW sM

7 = {x2, x4}. Voters 3, 4, 5, 6, 7,
and 8 do not have an incentive to deviate since the announced winner x4 is their
most preferred candidate among the potential winners. However, voters 1 and 2
have an incentive to deviate to a ballot supporting x3 and x2, respectively. After
their deviations, we reach the final scores s2 = (2, 3, 2, 1, 0) where x2 is the win-
ner. Hence, the polling institute can enforce the election of x2, whereas x1 would
remain the winner without poll manipulation.
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Figure 5.1: Example of strategic moves for the manipulation score sM =
(0, 2, 2, 3, 1).

5.3 . Balanced Culture

We have already presented some cultures in Section 2.6, in particular im-
partial culture in Definition 4, Mallows culture in Definition 9, Walsh’s culture
in Definition 7 and Conitzer’s culture in Definition 8. We will now show that
most of them satisfy a general condition on cultures, which is very useful for
the purpose of our chapter. We use PC(a ≻i b) when it is clear from the con-
text instead of PC(≻i| a ≻i b). In the following of this chapter, we consider
independent and identical drawings of voters’ preferences such that we can
either look at the distribution C(n,Πm

sub) as a whole object or n drawings of
preferences≻i. For technical reasons, we assume that the considered culture
assigns positive probability to ranking more than two different candidates in
the top positions. Note that this assumption is also natural since we focus
on strategic voting and manipulation only occurs with at least three candi-
dates [Gibbard, 1973; Satterthwaite, 1975].

We introduce below a simple property on cultures which will be key in the
poll manipulation analysis.
Definition 19 (Balanced culture). A distributionC(n,Πm) is said to be balanced
for a given candidate c ∈ M if there exists another sufficiently worst candidate
ℓ ∈ M \ {c}, in the sense that PC(c ≻i ℓ) ≥ 1

2 . The set of such candidates ℓ for
x is denoted by BC(x). In general, a distribution C is said to be balanced if it is
balanced for every candidate c ∈M .
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It turns out that all cultures that we consider are balanced.
Proposition 58. The impartial culture is balanced.

Proof. Let i ∈ N be a voter. The impartial culture is balanced for every can-
didate because for any pair of candidates x and y, we have PIC(x ≻i y) =

PIC(y ≻i x) =
1
2 since each preference order in Πm has the same probability

to be drawn.
For a given axis> onM , let e>1 and e>2 denote the two extreme candidates

of >.
Proposition 59. If x ∈M \ {e>1 , e>2 }, then every single-peaked culture C(n,Πm

> )

is balanced for x. If x ∈ {e>1 , e>2 }, then every single-peaked culture C(n,Πm
> )

which also satisfies PC({≻i |worst≻i = x}) ⩽ 1
2 , is balanced for x.

Proof. Let > be an axis on M . Observe first that, by definition, every pref-
erence order ≻i which is single-peaked w.r.t. >, must rank last an extreme
candidate of>. Therefore, for every single-peaked cultureC(n,Πm

> ), wemust
have PC({≻i | worst≻i = e>1 } ∪ {≻i | worst≻i = e>2 }) = 1. Moreover, since
PC({≻i | worst≻i = e>1 } ∪ {≻i | worst≻i = e>2 }) ⩽ PC({≻i | worst≻i =

e>1 }) + PC({≻i | worst≻i = e>2 }), this implies that there exists an extreme
candidate e>ℓ , for ℓ ∈ [2], such that PC({≻i | worst≻i = e>ℓ }) ⩾ 1

2 . It followsthat, for every candidate x ∈M \ {e>1 , e>2 }, PC(x ≻i e
>
ℓ ) ⩾

1
2 , proving the firstpart of the statement. Consider now a candidate e>ℓ for ℓ ∈ [2]. Assuming that

PC({≻i |worst≻i = e>ℓ }) ⩽
1
2 , implies that PC({≻i |worst≻i = e>3−ℓ}) ⩾

1
2 andthus PC(e

>
ℓ ≻i e

>
3−ℓ) ⩾

1
2 , proving the second part.

In particular, the previous proposition shows that both Walsh’s [2015]
and Conitzer’s [2007] cultures are balanced.
Proposition 60. Any Mallows cultureMϕ,σ is balanced for every candidate x ∈
M \ {worstσ}.

Proof. Consider any candidate x ∈ M \ {worstσ} and the candidate ℓ :=

worstσ. Let Πm
y≻z denote the set of all preferences orders where y is ranked

before z, i.e., Πm
y≻z := {≻i∈ Πm : y ≻i z}.Consider the bijection τ : Πm

ℓ≻x → Πm
x≻ℓ, where for every preference order

≻i∈ Πm
ℓ≻x, we construct the preference order τ(≻i) ∈ Πm

x≻ℓ which is the same
as ≻i except that the positions of x and ℓ are swapped. We will show that
PMϕ,σ(τ(≻i)) ≥ PMϕ,σ(≻i) for every ≻i∈ Πm

ℓ≻x. For this purpose, we will
show that dKT (σ,≻i) ≥ dKT (σ, τ(≻i)), by analyzing the differences between
≻i and τ(≻i) in terms of agreement on pairwise comparisons with σ.

By definition, for any arbitrary preference order ≻′
i, we have that:

dKT (σ,≻′
i) = dKT ([σ]|M\{x,ℓ}, [≻′

i]|M\{x,ℓ}) + |{y ∈M : ℓ ≻′
i y}|
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+|{y ∈M \ {ℓ} : x ≻′
i y and yσx}|+ |{y ∈M \ {ℓ} : y ≻′

i x and xσy}|

where [≻′′
i ]|Y denotes the restriction of the preference order ≻′′

i on Y ⊆ M .
Observe that, by construction, for any ≻i∈ Πm

ℓ≻x, ≻i and τ(≻i) agree on all
pairwise comparisons withinM \ {ℓ, x}.

Therefore, we have:
dKT ([σ]|M\{x,ℓ}, [≻i]|M\{x,ℓ}) = dKT ([σ]|M\{x,ℓ}, [τ(≻i)]|M\{x,ℓ})

Moreover, by construction:
• For all candidates y such that ℓ τ(≻i) y it implies that ℓ ≻i y,
• For all candidates y ∈M \ {ℓ} such that x ≻i y it implies that x τ(≻i) y,
• For all candidates y ∈M \ {ℓ} such that y τ(≻i) x it implies that y ≻i x.

It follows that we have:
dKT (σ,≻i)− dKT (σ, τ(≻i)) = |{y ∈M : ℓ ≻i y τ(≻i) ℓ}|

−|{y ∈M\{ℓ} : yσx and x τ(≻i) y ≻i x}|+|{y ∈M\{ℓ} : xσy and x τ(≻i) y ≻i x}|

By construction, it holds that
|{y ∈M : ℓ ≻i y τ(≻i) ℓ}| = r≻i(x)− r≻i(ℓ)

Moreover,
|{y ∈M \ {ℓ} : yσx and x τ(≻i) y ≻i x}|

+|{y ∈M \ {ℓ} : xσy and x τ(≻i) y ≻i x}| = r≻i(x)− r≻i(ℓ)− 1

which implies that
−(r≻i(x)− r≻i(ℓ)− 1) ⩽ −|{y ∈M \ {ℓ} : yσx and x τ(≻i) y ≻i x}|

+|{y ∈M \ {ℓ} : xσy and x τ(≻i) y ≻i x}| ⩽ r≻i(x)− r≻i(ℓ)− 1

Therefore, in total, we have
1 ≤ dKT (σ,≻i)− dKT (σ, τ(≻i)) ≤ 2(r≻i(x)− r≻i(ℓ))− 1

and thus dKT (σ,≻i) ≥ dKT (σ, τ(≻i)). By definition of the Mallows culture
Mϕ,σ , we thus have PMϕ,σ(τ(≻i)) ≥ PMϕ,σ(≻i). Hence, we conclude that
PMϕ,σ({≻′

i: x ≻′
i ℓ}) ≥ PMϕ,σ({≻′

i: ℓ ≻′
i x}), and thus PMϕ,σ({≻′

i: x ≻′
i ℓ}) ≥

1
2 , implying thatMϕ,σ is balanced for x.
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5.4 . The Unrestricted Poll Manipulation Problem

This section is devoted to the study of the unrestrictedmanipulation prob-
lem where the polling institute can send any score in I . We first give some
results on the computational complexity of the problem then we continue
our work with a probabilistic approach of the problem to capture what can
happen in practice.

We first prove that, even in the unrestricted case, the poll manipulation
problem is NP-complete. Our result answers an open question fromBaumeis-
ter et al. [2020].
Theorem 61. The unrestricted manipulation problem is NP-complete.

Proof. Membership to NP is straightforward: given communicated scores, we
can efficiently derive the possible unique deviation of each voter and compute
the winner in the deviating profile.

For hardness, we perform a reduction from a variant of Exact Cover by
3-Sets (X3C) known to be NP-complete [Garey and Johnson, 1979]: Given a set
X = {x1, x2, . . . , x3q} and a set S = {S1, S2, . . . , S3q} of 3-element subsets of
X , where each element xi occurs in exactly three subsets ofS, we askwhetherthere exists an exact cover, i.e.,., a subset S′ ⊆ S such that every element of
X occurs in exactly one member of S′. From an instance (X,S) of X3C, we
construct an instance of our unrestricted manipulation problem as follows.
For each element xi, for i ∈ [3q], we create a candidate yi, and for each subset
Sj where j ∈ [3q], we create a candidate cj . We add three candidates w, z,
and t where t is our target candidate.

There are 12q + 7 voters: for each element xi, for i ∈ [3q], we create one
voter Yi, for each subset Sj , for j ∈ [3q], we create three voters Cr

j where
r ∈ [3], and we finally add two voters T ℓ, two voters Zℓ, two voters W ℓ for
ℓ ∈ [2], and one voterD.

Their preferences are defined below, where y(srj)denotes the candidate yiassociated with the rth element of subset Sj , and when a subset of candidatesis mentioned, the candidates are ranked according to the increasing order of
their indices.

Yi: w ≻ yi ≻ z ≻ {yi′}i′ ̸=i ≻ {cj}j ≻ t for i ∈ [3q]
Cr
j : y(srj) ≻ cj ≻ z ≻ w ≻ {yi′}i′ ̸=i ≻ {cj}j ≻ t for j ∈ [3q], r ∈ [3]

T ℓ: t ≻ z ≻ w ≻ {yi}i ≻ {cj}j for ℓ ∈ [2]
Zℓ: z ≻ w ≻ {yi}i ≻ {cj}j ≻ t for ℓ ∈ [2]
W ℓ: w ≻ z ≻ {yi}i ≻ {cj}j ≻ t for ℓ ∈ [2]
D: w ≻ t ≻ z ≻ {yi}i ≻ {cj}j
Finally, the tie-breaking rule is as follows: w▷ t▷ z ▷ y1 ▷ · · ·▷ y3q ▷ c1 ▷

· · ·▷ c3q.
123



Table 5.1: Candidates’ scores in the complexity proof of Theorem 61
candidate initial score announced score score after manipulation
yi (i ∈ [3q]) 3 3 3

cj (j ∈ [3q]) 0
3 if Sj ∈ S ′ 3 if Sj ∈ S ′

0 otherwise 0 otherwise
w 3q + 3 2 2
t 2 2 3
z 2 3 2

winner w z t

The winner of the election with the truthful ballot profile is candidate w.
The details of the scores for this truthful ballot profile are given in the second
column of Table 5.1.

We claim that there exists an exact cover in (X,S) iff we can force the
election of candidate t in the constructed instance.
=⇒ : Suppose first that there exists a subset S′ ⊆ S such that every ele-
ment ofX occurs in exactly one subset of S′. Since |X| = 3q and all elements
of S are subsets ofX of size 3, we have |S′| = q. Let us consider manipulated
communicated scoreswhich differ from the sincere ones by taking 3q+1 votes
initially given tow to give one additional vote to z and three votes to cj for each
Sj ∈ S′. These scores are summarized in the third column of Table 5.1. By the
tie-breaking rule, candidate z is the announced winner.

It follows from these communicated scores that all candidates are poten-
tial winners except the candidates cj such that Sj /∈ S′. Therefore, each voter
Yi will deviate from ballot w to ballot yi, for i ∈ [3q], all voters Cr

j such that
Sj ∈ S′ will deviate from ballot y(srj) to ballot cj , and voterD will deviate from
ballot w to ballot t. Since S′ is an exact cover, each additional vote for yi byvoter Yi will be balanced by the removal of one vote for yi by the voter Cr

j ,such that Sj ∈ S′ and y(srj) = yi, who deviates from yi to cj . Therefore, intotal, these deviations will remove 3q + 1 votes from w, give three votes to q

candidates cj and add one vote to t, leading to the victory of t, as summarized
in the fourth column of Table 5.1.
⇐= : Suppose now that there exist communicated scores such that the
target candidate t becomes the winner after deviations from the voters. The
global idea of the proof is that the only possibility for communicated scores to
lead to the victory of the target candidate t is to announce candidate z the win-
ner and, as potential winners, the target candidate t and exactly q candidates
cj which correspond to subsets Sj forming an exact cover ofX .
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Wewill first show by disjunction case that the announced winner can only
be candidate z.

Observe that t cannot win if it does not gain any additional vote. Indeed,
for t to win with at most two votes, w cannot get more than one vote, and all
the other candidatesmore than two votes, which sums to atmost 12q+3 votes
for other candidates, whereas there would be 12q+5 voters who do not vote
for t, a contradiction. It follows that t cannot be announced as the winner, and
must be a potential winner. However, by construction of the preferences, the
only voter who can deviate to a ballot t is voterD. Therefore, in the deviating
profile, t can get at most three votes.

If w is announced the winner, then the 3q voters Yi will keep their vote for
w, therefore t can never win with its maximum score of three, a contradiction.

Let us now analyze the case where the announcedwinner is a candidate yior cj , by considering the candidates that can be announced potential winners:
• If candidate z is a potential winner, then at least voters T ℓ andW ℓ will
deviate to it, which leads to at least four votes for z, whereas t can get
at most three votes. Therefore, z cannot be a potential winner.

• Now, if candidate w is a potential winner, then at least voters T ℓ and Zℓ

will deviate to it, leading to at least four votes for w, whereas t can get
at most three votes. Therefore, w cannot be a potential winner.

• Now, if a candidate yi′ is a potential winner, for i′ < i or when cj is thewinner, then at least voters T ℓ, Zℓ, and W ℓ, for ℓ ∈ [2], will deviate to
the candidate yi′ , that we call y∗, which is declared potential winner withthe smallest index i′, by construction of their preferences. Therefore, y∗
would get at least six votes, whereas t can get at most three votes. Thus,
such yi′ cannot be a potential winner.• Now, if a candidate yi′ or cj′ is a potential winner, for i′ > i and yiwinner,then voter Yi will keep her vote for w as well as voters W ℓ for ℓ ∈ [2],
which leads to at least three votes for w whereas w is preferred to t in
the tie-breaking rule. Therefore, such yi′ or cj′ cannot be a potential
winner.

• Now, if a candidate cj′ is a potential winner, for j′ < j and cj winner,then at least voters T ℓ, Zℓ, and W ℓ, for ℓ ∈ [2], will deviate to the can-
didate cj′ , that we call c∗, which is declared potential winner with the
smallest index j′, by construction of their preferences. Therefore, c∗
would get at least six votes, whereas t can get at most three votes. Thus,
such cj′ cannot be a potential winner.• Now, finally, if a candidate cj′ is a potential winner, for j′ > j and cjwinner, then all voters Yi will keep their vote for w, which leads to at
least 3q votes for w, whereas t can get at most three votes. Therefore,
such cj′ cannot be a potential winner.• It follows that t is the only potential winner, and thus all voters Yi keep
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their vote forw, which leads to at least 3q votes forw, and thus t cannot
win, a contradiction.

Consequently, the announcedwinnermust be candidate z. Since t can get
at most three votes, and w initially gets 3q+3 votes, at least 3q+1 votes must
be removed from w (w is preferred to t in the tie-breaking). Voters W ℓ will
not deviate from w if z is the announced winner, therefore all voters Yi and
D must deviate from w. It follows that each candidate yi must be a potential
winner as well as t. However, for each candidate yi, we need that at least oneof the three voters Cr

j such that y(srj) = yi deviates from her initial vote to
yi, otherwise yi would get four votes and t could not win. For such a voter
Cr
j to deviate, the only solution is to make candidate cj a potential winner. Byconstruction, it follows that we need to find a subset of candidates cj (tomake

them potential winners) such that the associated subsets Sj entirely coverthe elements in X . Thus, we need to make at least q candidates cj potentialwinners.
Let us now analyze the compatible scores that can be communicated. If z

is the announced winner with at most two votes, then by the tie-breaking rule,
candidates w and t can get at most one vote, and all the other candidates at
most two votes, which sums to at most 12q + 2 votes for other candidates,
whereas there would be 12q+5 voters who do not vote for z, a contradiction.
If z is the announced winner with at least four votes, then to be potential win-
ners, t should get at least three votes, all candidates yi at least four votes, andat least q candidates cj at least four votes, which sums to at least 16q+3 votes
for other candidates, whereas there are 12q+7 voters in total, a contradiction.
Consequently, zmust be announced the winner with exactly three votes, and
thus t must be announced with two votes, all candidates yi with three votes,
and at least q candidates cj with three votes. The only possibility to announcesuch scores is to take 3q+1 votes from w and to distribute them to give three
votes to q candidates cj and one vote to candidate z. The only possiblemargin
then is given by the two remaining votes forw, however they are not sufficient
to make another candidate cj a potential winner. Hence, there are exactly qcandidates cj which are potential winners such that the associated subsets of
Sj entirely cover X , which means that the union of such subsets is an exact
cover.

Note that even though we have proved that the problem is NP-complete,
we know from Baumeister et al. [2020] that it is FPT when parameterized by
the number of candidates m. Another way to go beyond the NP-hardness
result, which focuses on worst-case complexity, is to analyze the actual pos-
sibility of poll manipulation using a probabilistic approach which works even
whenm is large. We will see that the poll manipulation problem is often easy
to tackle in a probabilistic point of view, following natural statistical cultures
as defined in Section 2.6. We will start by considering a balanced culture.
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For a given target candidate x∗ the polling institute wants to elect, we say
its poll manipulation is successful if after all strategic moves from voters, the
desired candidate x∗ is elected. Let us denote by S the associated event of
success, which corresponds to the yes-instances of the unrestricted poll ma-
nipulation problem.

Let 2PW-H(x∗, ℓ) be the heuristic detailed in Algorithm2which announces a
score with exactly two potential winners x∗ and ℓ, with x∗ the target candidate
and ℓ the announcedwinner. For realistic conditions, one point is given to can-
didates with a positive score in the truthful ballot profile. Assuming n > m+5

is sufficient to guarantee the possibility of making any pair of candidates the
only potential winners (this hypothesis is rather weak since we focus on large
elections in terms of voters). It then suffices to check whether the associated
communicated polling score leads to the victory of x∗. This heuristic can be
called by a global heuristic detailed in Algorithm 1, which tests it with different
candidates ℓ.
Algorithm 1: Global Heuristic
Input: (N,M,P,▷), Target candidate x∗

1 foreach ℓ ∈M \ {x∗} do
2 (is_successful, s)← 2PW-H(x∗, ℓ);
3 if is_successful then return (True, s) ;
4 return (False,None)

Algorithm 2: 2PW-H(x∗, ℓ)
Input: (N,M,P,▷), Target candidate x∗, Candidate ℓ

1 s←m-vector with zeros; R← n;
2 foreach j ∈M \ {x∗, ℓ} do
3 if ∃i ∈ N such that top≻i

= j then sj ← 1; R← R− 1;
4 sx∗ ← ⌊R

2
⌋; sℓ ← ⌊R2 ⌋; j∗ ← argminj∈M\{x∗,ℓ} sj ;

5 if x∗ ▷ ℓ and R is even then sx∗ ← sx∗ − 1; sj∗ ← sj∗ + 1;
6 if x∗ ▷ ℓ and R is odd then sℓ ← sℓ + 1;
7 if ℓ▷ x∗ and R is odd then sj∗ ← sj∗ + 1;
8 ifWP (b

s) = x∗ then return (True, s);
9 else return (False,None);
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We present a slightly modified version of Example 29 to illustrate this
heuristic:
Example 30. Let us consider an election (N,M,P,▷) where N = {1, . . . , 6},
M = {x1, x2, x3}, the tie-breaking▷ follows the lexicographic order and the pref-
erence profile P is as follows:

1: x1 ≻ x2 ≻ x3
2: x1 ≻ x2 ≻ x3
3: x2 ≻ x1 ≻ x3

4: x2 ≻ x1 ≻ x3
5: x3 ≻ x2 ≻ x1
6: x3 ≻ x2 ≻ x1

The initial truthful scores are given by s0 = (2, 2, 2). If the score communicated
by the polling institute is the truthful one, then voters 5 and 6 will vote for x2
and she will be the winner. Suppose that the polling institute communicates the
following score vector sM = (2, 1, 3). Then, voters 3 and 4 will deviate to x1 and
she will be the winner. Hence, the polling institute can enforce the election of x1,
whereas x2 would be the winner without poll manipulation. In this example, x∗ =

x1 and l = x3, thus we play the heuristic 2PW-H(x1, x3).
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Figure 5.2: Example of strategic moves for the manipulation score sM =
(2, 1, 3).

Our heuristics are computable in polynomial time and are inspired from
the heuristics of Wilczynski [2019] and Baumeister et al. [2020], where the idea
is to find a candidate ℓ, which is a threatening winner, i.e., enough voters pre-
fer x∗ to ℓ, while x∗ is the only credible alternative to ℓ, in order to incentivize
voters to deviate to x∗.
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Let S2PW-H(x∗, ℓ) denote the event of success for heuristic 2PW-H(x∗, ℓ). Let
X−ℓ be the random variable which counts the number of voters who prefer
x∗ over ℓ, i.e.,X−ℓ = |Ax∗≻ℓ|.

Similarly, let Yℓ,j be the random variable which counts the number of
voters who prefer ℓ over x∗ while their most preferred candidate is j, i.e.,
Yℓ,j = |{i ∈ Aℓ≻x∗

: top≻i = j}|. If our heuristic 2PW-H(x∗, ℓ) indeed suc-
ceeds to announce exactly two potential winners x∗ and ℓ with ℓ as a winner,
then only voterswhopreferx∗ over ℓ and currently vote for another candidate,
will deviate and they will do so in favor of x∗. Note that voters already having
x∗ as their top choice would keep this vote because there is no other poten-
tial winner. Therefore, in total, after deviations, x∗ obtains a number of votes
which is equal to the numbers of voters who prefer x∗ over ℓ. It follows that x∗
would win only if the number of voters preferring x∗ over ℓ is greater than the
number of voters who keep their vote for another candidate, implying that for
a given culture C(n,Πm), PC(S2PW-H(x∗, ℓ)) = PC(∀j ∈M \ {x∗}, Yℓ,j ⩽ X−ℓ).Our first theorem provides a high lower bound on the probability of suc-
cess of the poll manipulation heuristic.
Theorem 62. For a balanced culture C(n,Πm), there exists ℓ ∈ BC(x

∗) such
that the probability of success of the sub-heuristic 2PW-H(x∗, ℓ), is as follows:
PC(S2PW-H(x∗, ℓ)) ⩾ 1− 2(m− 2)(e−2n(px∗,ℓ−qx∗,ℓ,j∗ )

2
) where:

• px∗,ℓ := PC(x
∗ ≻i ℓ),• rx∗,ℓ,j := PC({ℓ ≻i x

∗} ∩ {j = top≻i}), for j ̸= ℓ,
• qx∗,ℓ,j :=

px∗,ℓ+rx∗,ℓ,j
2 ,

• j∗ := argminj∈M\{x∗,ℓ}PC(Yℓ,j ⩽ X−ℓ).
In particular, the probability of success of the global heuristic satisfies the same
lower bound.

Proof. For our target candidate x∗ and a balanced cultureC(n,Πm), let us con-
sider a candidate ℓ ∈ BC(x

∗). Since ℓ ∈ BC(x
∗), ℓ will never be better and we

can simplify the equality: PC(S2PW-H(x∗, ℓ)) = PC(∀j ∈M \ {x∗, ℓ}, Yℓ,j ⩽ X−ℓ).Our goal is to show a lower bound toPC(∀j ∈M \{x∗, ℓ}, Yℓ,j ⩽ X−ℓ). For thispurpose, the following lemma will be useful. We deduce from Bonferroni’s in-
equality (Lemma 6) that:
PC(∀j ∈M \ {x∗, ℓ}, Yℓ,j ⩽ X−ℓ) ⩾

∑
j∈M\{x∗,l}

PC(Yℓ,j ⩽ X−ℓ)− (m− 2− 1)

⩾
∑

j∈M\{x∗,ℓ}

min
j∈M\{x∗,ℓ}

PC(Yℓ,j ⩽ X−ℓ)− (m− 3)

⩾ (m− 2) · min
j∈M\{x∗,ℓ}

PC(Yℓ,j ⩽ X−ℓ)− (m− 3)

By considering j∗ := argminj∈M\{x∗,ℓ}PC(Yℓ,j ⩽ X−ℓ), we then have that
PC(∀j ∈ M \ {x∗, ℓ}, Yℓ,j ⩽ X−ℓ) ⩾ (m − 2) · (PC(Yℓ,j∗ ⩽ X−ℓ) − 1) + 1.
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Let us now treat the term PC(Yℓ,j∗ ⩽ X−ℓ). We remark that X−ℓ follows abinomial distribution of parameters n and px∗,ℓ and Yℓ,j∗ follows a binomial
distribution of parameters n and rx∗,ℓ,j∗ , where px∗,ℓ and rx∗,ℓ,j are defined
as px∗,ℓ = PC(x

∗ ≻i ℓ) and rx∗,ℓ,j = PC({ℓ ≻i x
∗} ∩ {j = top≻i}), for every

j ≠ ℓ. We introduce qx∗,ℓ,j∗ :=
px∗,ℓ+rx∗,ℓ,j∗

2 to lower bound our probability as
follows:

PC(Yℓ,j∗ ⩽ X−ℓ) ⩾ PC({Yℓ,j∗ < qx∗,ℓ,j∗ · n} ∩ {X−ℓ > qx∗,ℓ,j∗ · n})

We use again Bonferroni’s inequality (Lemma 6) to get: PC(Yℓ,j∗ ⩽ X−ℓ) ⩾
PC({Yℓ,j∗ < qx∗,ℓ,j∗ · n}) + PC({X−ℓ > qx∗,ℓ,j∗ · n})− 1.

Applying the inequality from Lemma 4 on Bernoulli variablesXk with ak =

0 and bk = 1, for every k ∈ [n], and t = x·
√
n, we get: P(Sn−E(Sn) ⩾ x·

√
n) ⩽

e−2x2 , where Sn =
∑n

i=1Xk. Now, by taking x =
√
n · (qx∗,ℓ,j∗ − rx∗,ℓ,j∗) andapplying Lemma 4 to our sum of Bernoulli variables Yℓ,j∗ (i.e., a binomial of

parameters n and rx∗,ℓ,j∗ ), we get:
PC(Yℓ,j∗ < qx∗,ℓ,j∗ · n) = 1− PC(Yℓ,j∗ ⩾ qx∗,ℓ,j∗ · n)

= 1− PC(Yℓ,j∗ − rx∗,ℓ,j∗ · n ⩾ qx∗,ℓ,j∗ · n− rx∗,ℓ,j∗ · n)

= 1− PC(Yℓ,j∗ − rx∗,ℓ,j∗ · n ⩾
√
n(
√
n(qx∗,ℓ,j∗ − rx∗,ℓ,j∗)))

⩾ 1− e−2n(qx∗,ℓ,j∗−rx∗,ℓ,j∗ )
2

Now, we want to apply a similar treatment to variables X−ℓ. Let us denote
X ′

−ℓ = n − X−ℓ the random variable following a binomial distribution of pa-
rameters n and 1− px∗,ℓ. We have:

PC(X−ℓ > qx∗,ℓ,j∗ · n) = PC(n−X ′
−ℓ > qx∗,ℓ,j∗ · n)

= PC(X
′
−ℓ < n− qx∗,ℓ,j∗ · n) = 1− PC(X

′
−ℓ − (1− px∗,ℓ) · n

⩾ (1− qx∗,ℓ,j∗) · n− (1− px∗,ℓ) · n) = 1− PC(X
′
−ℓ − (1− px∗,ℓ) · n

⩾
√
n
√
n(px∗,ℓ − qx∗,ℓ,j∗)) ⩾ 1− e−2n(px∗,ℓ−qx∗,ℓ,j∗ )

2

Putting the last two inequalities together we get:
PC(Yℓ,j∗ ⩽ X−ℓ) ⩾ 1− e−2n(px∗,ℓ−qx∗,ℓ,j∗ )

2 − e−2n(qx∗,ℓ,j∗−rx∗,ℓ,j∗ )
2

Coming back to the first work of the proof we have:
PC(S2PW-H(x∗, ℓ)) ⩾ 1− (m− 2)(e−2n(px∗,ℓ−qx∗,ℓ,j∗ )

2
+ e−2n(qx∗,ℓ,j∗−rx∗,ℓ,j∗ )

2
)

Finally, since qx∗,ℓ,j∗ is defined as themiddle between px∗,ℓ and rx∗,ℓ,j∗ , we cansimplify the inequality:
PC(S2PW-H(x∗, ℓ)) ⩾ 1− 2(m− 2)e−2n(px∗,ℓ−qx∗,ℓ,j∗ )

2
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We can thus deduce the same lower bound for the probability of existence
of a successful unrestricted poll manipulation.
Corollary 63. For a balanced culture C(n,Πm), the probability of success
of an unrestricted poll manipulation is as follows: PC(S) ⩾ 1 − 2(m −
2)(e−2n(px∗,ℓ−qx∗,ℓ,j∗ )

2
).

Our next theorem considers the asymptotic case and shows the conver-
gence of the lower bound probability toward 1 when n becomes large. Since
the number of voters is typically large in political elections, this shows an im-
portant susceptibility to poll manipulation.
Theorem 64. For a balanced culture C(n,Πm), there exists ℓ ∈ BC(x

∗) such
that the probability of success of the sub-heuristic 2PW-H(x∗, ℓ), and thus of the
Global Heuristic, tends toward 1, i.e., limn→∞PC(S2PW-H(x∗, ℓ)) = 1 and thus
limn→∞PC(S) = 1.

Proof. We use the lower bound from Theorem 62 to deduce the convergence
toward 1 of this probability. In fact it is enough to pass to the limit onboth sides
in n the number of voters. The only tricky point might be when px∗,ℓ = qx∗,ℓ,j∗ .However, this situation can happen only when the culture puts positive proba-
bility only on preference orders whose top can only be x∗ or j and in an equal
manner, which is not possible by natural assumption on the culture.

Observe that the quantities px∗,ℓ and qx∗,ℓ,j fromTheorem62 are constants
and different, we thus have exponentially fast convergence toward 1 for the
probability of success of 2PW-H(x∗, ℓ) w.r.t. the number of voters.
Example 31. To give a quick intuition, observe that form = 5 and n = 50 under
impartial culture, we get a lower bound of 0.89 and for m = 5 and n = 100, we
already have a lower bound of 0.99 which is very fast! Example 31 is an illustration
with different values ofm:

Beyond this general result on balanced cultures, the goal would be to cap-
ture realistic cultures regarding real elections [Boehmer et al., 2024]. From
Propositions 58–60, we can derive the following corollary which shows that
our general result covers very natural concrete cultures.
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Lower bounds of PIC(S2PW-H(x∗, ℓ)) from Theorem 62
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Figure 5.3: Plot of Lower Bounds with respect to n andm = {3, 4, 5, 6}

Corollary 65. For a cultureC(n,Πm), there exists ℓ ∈ BC(x
∗) such that the prob-

ability of success of 2PW-H(x∗, ℓ), and thus of the Global Heuristic, tends toward 1,
i.e., limn→∞PC(S2PW-H(x∗, ℓ)) = 1 and thus limn→∞PC(S) = 1, when:

• C corresponds to the impartial culture, or

• C is a single-peaked culture and x∗ is not an extreme candidate or x∗

is extreme but PC(≻i| worst≻i = x∗) ⩽ 1
2 , which includes Walsh’s

and Conitzer’s cultures, or

• C corresponds to a Mallows cultureMϕ,σ where x∗ ̸= worstσ.

Our results show that even if the poll manipulation problem is hard, it is
very likely for the polling institute to efficiently and successfully control the
election, under natural preference distributions. However, the hypothesis
that allows to send any score is questionable since the polling institute might
be forced to meet some legal quality standards or to maintain voter trust by
sending a reasonable score.

5.5 . The Restricted Poll Manipulation Problem

This section is devoted to the study of the manipulation problem in its
restricted version i.e., the polling institute is restricted in its ability to lie about
the scores and can only send a score vector from Ik.
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The restricted poll manipulation problem is known to be NP-
hard [Baumeister et al., 2020]. However, one could hope to get a fixed-
parameter tractable algorithm w.r.t. the maximum allowed distance k to
the truthful scores. We show below that such an efficient algorithm is unlikely
to exist since we prove that the problem is W[1]-hard.
Theorem 66. The restricted manipulation problem is W[1]-hard.

Proof. From an instance (G = (V,E), k) of k-Clique where n := |V |,m := |E|
and, w.l.o.g., 2 < k < n − 1, we construct an instance of our restricted poll
manipulation problem as follows.

For each vertex vi ∈ V , we create a candidate vi, and for each edge
{vi, vj} ∈ E, we create a candidate eij (we suppose i < j for this notation).
We add three other candidates w, t, and z. In total, we thus have n + m + 3

candidates.
LetK := (n−k)k. For each vertex vi ∈ V , we create k voters U ℓ

i for ℓ ∈ [k],
and K − 1 − δ(vi) voters Dℓ

i for ℓ ∈ [K − 1 − δ(vi)] (by our assumption on k,
this quantity cannot be negative), where δ(vi) denotes the degree of vertex viin G.

For each edge {vi, vj} ∈ E, we create two voters F i
ij and F j

ij , and K − 2

voters Eℓ
ij for ℓ ∈ [K − 2]. Finally, we add K voters T ℓ for ℓ ∈ [K] and K − 1

voters Zℓ for ℓ ∈ [K − 1].
The preferences of the voters over the candidates are described below,

for each i ∈ [n], and each {vp, vq} ∈ E:
U ℓ
i : w ≻ vi ≻ z ≻ {vj}j ̸=i ≻ {er,s}{r,s} ≻ t for ℓ ∈ [k]

F p
pq: vp ≻ epq ≻ z ≻ w ≻ {vj}j ̸=p ≻ {er,s}{r,s}̸={p,q} ≻ t

F q
pq: vq ≻ epq ≻ z ≻ w ≻ {vj}j ̸=q ≻ {er,s}{r,s}̸={p,q} ≻ t

Dℓ
i : vi ≻ z ≻ w ≻ {vj}j ̸=i ≻ {er,s}{r,s} ≻ t for ℓ ∈ [K − 1− δ(vi)]

T ℓ: t ≻ z ≻ w ≻ {vj}j ≻ {er,s}{r,s} for ℓ ∈ [K]

Eℓ
pq: epq ≻ z ≻ w ≻ {vj}j ≻ {er,s}{r,s}̸={p,q} ≻ t for ℓ ∈ [K − 2]

Zℓ: z ≻ w ≻ {vj}j ≻ {er,s}{r,s} ≻ t for ℓ ∈ [K − 1]

Finally, the tie-breaking rule is as follows: z ▷ t▷ · · ·▷ w.
The winner of the election with the truthful ballot profile is candidate w.

The details of the scores for this truthful ballot profile are given in the second
column of Table 5.2.

We claim that G admits a clique of size k iff we can force the election of
candidate t by announcing scores which differ from the truthful ones by at
most k2 + 1 vote changes.
=⇒ : Suppose first that there exists a subset of vertices S ⊆ V such that
S is a k-Clique of G, i.e., |S| = k and {vi, vj} ∈ E for every vi, vj ∈ S. Let
us consider manipulated communicated scores which differ from the sincere
ones by taking k2 votes initially given to w in order to give one additional vote
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Table 5.2: Candidates’ scores in the complexity proof of Theorem 66
candidate initial score announced score score after manipulation
vi (i ∈ [n]) K − 1

K if vi ∈ S K if vi ∈ S
K − 1 otherwise K − 1 otherwise

eij ({vi, vj} ∈ E) K − 2
K if vp, vq ∈ S K if vp, vq ∈ S

K − 2 otherwise K − 2 otherwise
w kn K K
t K K − 1 K
z K − 1 K K − 1

winner w z t

to each vi ∈ S (there are k such candidates) and two additional votes to each
eij such that vi, vj ∈ S (there are k(k−1)

2 such candidates), and finally by taking
one vote initially given to t in order to give it to z. In total, the communicated
scores differ from the sincere ones by exactly k2 + 1 vote changes.

In the manipulated scores, z is winning with K votes thanks to the tie-
breaking, while only the k candidates vi corresponding to the vertices of theclique are announced as potential winners withK votes, as well as the k(k −
1)/2 candidates corresponding to the edges of the clique, and candidate w.
These manipulated scores are summarized in the third column of Table 5.2.

It follows from these communicated scores that all voters U ℓ
i such that

vi ∈ S deviate from w to vi. By these deviations, candidate w loses k2 votes,
and thus obtains in total K votes, while each candidate vi ∈ S gains k votes.
However, by definition of the clique, for each vi ∈ S, there are exactly k − 1

voters F i
ij (or F i

ji) who will deviate from vi to the potential winner eij (or eji)corresponding to an edge incident to vi. Therefore, each vi ∈ S also loses k−1
votes, and thus obtains in totalK votes. Note that, by these deviations, each
candidate eij such that vi, vj ∈ S gains two additional votes and thus obtains
in total K votes. No other deviation is possible because all remaining voters
prefer z to all potential winners that are not at top of their preferences. The
scores after all deviations are summarized in the fourth column of Table 5.2.
The maximum score isK , which is obtained by w, k candidates vi, and k(k−1)

2candidates eij , and t. Candidate t is favored by the tie-breaking among these
candidates and thus wins the election.
⇐= : Suppose now that there exist communicated scores such that the
target candidate t becomes the winner after deviations from the voters. The
global idea of the proof is that the only possibility for communicated scores
to lead to the victory of the target candidate t is to announce candidate z

the winner and, as potential winners, k candidates vi, as well as k(k − 1)/2

candidates epq , such that for each potential winner vi, there are k−1 potential
134



winners eij (or eji) corresponding to edges incident to vi.
We will first prove that z must be announced as the winner. Observe that

no voter can deviate to t because every voter, except all voters T ℓ who already
vote for t, ranks it last. It follows that we need that at least k2 voters U ℓ

i , whocurrently vote for w, deviate to another candidate, and thus w cannot be an-
nounced as the winner.

Let us analyze the casewhere the announcedwinnerwould be a candidate
vi, epq or candidate t, by considering the candidates that can be announced
potential winners:

• If candidate z or w is a potential winner, then at least all voters Dℓ
i andall votersEℓ

rs (except votersEℓ
pq if epq is announced as thewinner) woulddeviate to z if z is a potential winner or to w otherwise, and thus z or

w would gain too many votes compared to t and t would never win.
Therefore, none of them is a potential winner.

• Now, if a candidate vi′ is a potential winner, for i′ < i or when epq or t isthe winner, then all votersDℓ
i and all votersEℓ

rs (except votersEℓ
pq if epqis announced as the winner) would deviate to such candidate vi′ , thatwe call v∗, which is declared potential winner with the smallest index i′.

Thus, such v∗ would gain too many votes compared to t and t would
never win. Therefore, such vi′ cannot be a potential winner.• Now, if a candidate vi′ or ers is a potential winner, for i′ > i and viwinner, then all voters U ℓ

i′′ , for i′′ ≠ i′, would keep their vote for w and
thus w would have too many votes compared to t and t would never
win. Therefore, such vi′ or ers cannot be a potential winner.• Now, if a candidate ers is a potential winner, for {r, s} < {p, q} when
epq winner or for t winner, then at least all voters Dℓ

i and all voters Eℓ
rs(except voters Eℓ

pq if epq is announced as the winner) would deviate to
such candidate ers, that we call e∗, which is declared potential winner
with the smallest index {r, s}. Therefore, e∗ would get too many votes
compared to t and twould never win. Thus, such ers cannot be a poten-tial winner.

• Now, finally, if a candidate ers is a potential winner, for {r, s} > {p, q}
and epq winner, then all voters U ℓ

i′ would keep their vote for w and thus
w would have too many votes compared to t and t would never win.
Therefore, such ers cannot be a potential winner.• It follows that t is the only potential winner, and thus all voters U ℓ

i′ keeptheir vote forw. Thus,w has toomany votes compared to t and t cannot
win, a contradiction.

Hence the communicated scores must announce z as the winner.
Since z is ranked among the first two most preferred candidates by all

voters Dℓ
i , T ℓ, Eℓ

pq and Zℓ, none of these voters will deviate. Recall that we
need at least k2 voters U ℓ

i (for i ∈ [n] and ℓ ∈ [k]) who deviate to another
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candidate, and the only candidate other than their top candidate that voters
U ℓ
i prefer to z is vi, for all ℓ ∈ [k]. Therefore, we need to announce at least k

candidates vi as potential winners. In such a way, each chosen candidate vigains k additional votes, whereas it initially had K − 1 votes from voters Dℓ
i ,who cannot deviate, and from voters F i

ij (or F i
ji) for each edge {vi, vj} ∈ E.

Since twill have at mostK votes, we need at least k−1 voters F i
ij (or F i

ji) whodeviate from ballot vi. The only other candidate that such voters prefer to z is
candidate eij (or eji). Therefore, for each chosen vi potential winner, we alsoneed to announce as potential winners at least k − 1 candidates eij (or eji)which correspond to edges incident to vi.Recall that we can only announce scores which differ from the truthful
ones by at most k2 + 1 vote changes. If we announce z the winner with at
mostK− 1 votes, then we need to remove at least k2+1 votes for w and one
vote for t, therefore we have already exceeded our budget. If we announce
z the winner with at least K + 1 votes, then we need to add two votes to
at least k candidates vi, three votes to at least k(k−1)

2 candidates eij and one
vote to z, therefore we have already exceeded our budget. It follows that we
need to announce z the winner with exactly K votes. In this case, we need
to add one vote to z, one vote to at least k candidates vi and two votes to atleast k(k−1)

2 candidates eij . Therefore, tomeet our budget, we need to declare
exactly k candidates vi and exactly k(k−1)

2 candidates eij as potential winners,in such a way that for potential winner vi there exist k−1 potential winners eijcorresponding to incident edges. Hence, the chosen candidates vi correspondto a k-clique in G.
Nevertheless, we prove below that the restricted poll manipulation prob-

lem can be efficiently solved if the parameter k of the maximum distance to
the truthful scores is a constant.
Proposition 67. The restrictedmanipulation problem is in XPw.r.t. themaximum
distance k to the truthful scores. More precisely, it can be solved by an algorithm
which runs in time Θ(m2k+1 · n).

Proof. We give an upper bound to |Ik|. We denote that any move of voters is
characterized by the origin and the destination candidate. Since our distance
counts the number of swaps, one swap is defined by choosing two candidates,
we then get (m2 ) = m(m−1)

2 and |I1| ⩽ m(m−1)
2 . We start from sT and iterate

the upper bound argument and we get: |Ik| ⩽ (m(m−1)
2 )k ⩽ m2k. It is then

enough to visit every score of Ik and add the winner determination inΘ(m ·n).
At the end, we get Θ(m2k+1 · n).

However, the previous result cannot be used if k is large and does not
tell whether there actually exists a successful manipulation. We thus use a
probabilistic approach to analyze the possibility of poll manipulation. Let Sk
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denote the event of success for the restricted poll manipulation where k de-
notes the maximum allowed distance to the truthful scores. We first prove
that when k is small compared to √n, the restricted poll manipulation tends
to be impossible.
Theorem68. For any cultureC(n,Πm), if themaximumdistance k to the truthful
scores is such that k = o(

√
n) and the target candidate x∗ is not winning in the

initial score, then the probability of existence of a successful poll manipulation to
elect x∗ tends toward zero, i.e., limn→∞PC(Sk) = 0.

Proof. Let us start by identifying the probability law of the truthful scores.
The truthful scores follow a multinomial law because there are n voters’

preferences drawn independently at randomwith the same law, and we have
m possibilities for the most preferred candidate of each voter, and these are
the only necessary elements to compute scores sT . We will use the following
result on multinomial laws.
Lemma 69 ([Severini, 2005]). If (Nn)n⩾0 is a multinomial law inRm with param-
eters n and q = (q1, . . . , qm) andN (0;K) a multivariate normal distribution then
1√
n
(Nn − nq) −→

n→+∞
N (0;K), whereKi,j = qiδi,j − qiqj , for every 1 ≤ i, j ≤ m,

with δi,j = 1 if i = j and δi,j = 0 otherwise.

Let c∗ be the truthful winner, i.e., c∗ := WP (b
T ). Informally, a neces-

sary condition for the existence of a successful manipulation with the two-
candidate heuristic is that there is at least one candidate that is sufficiently
close to the winner. The pair of candidates would then be this candidate and
the current winner. Of course, this is not necessarily sufficient, as the pair
may not be the right one. However, we will see that this necessary condition
occurs with probability 0, and that’s enough for us to conclude. We then write

Sk ⊂ {
⋃
z ̸=c∗

{|sTc∗ − sTz + 1c∗▷z| ≤ k}}

Wewill analyze the probability of the second event to get an upper bound
on the probability of success of the restricted poll manipulation problem. By
using Observation 48 and Lemma 69withNn = sT , we get: 1√

n
(sT−nq) −→

n→+∞
N (0;K), where Ki,j = qiδi,j − qiqj , for every 1 ≤ i, j ≤ m. We denote
N (0;K) = (N1, . . . ,Nm) and remark that each Nj follows a Gaussian law.
For any z ∈M \ {x∗}, we have

lim
n→+∞

PC(|sTc∗ − sTz + 1c∗▷z| ≤ k)

= lim
n→+∞

PC(|
1√
n
sTc∗ − nqc∗ −

1√
n
sz + nqz +

1c∗▷z√
n

+ n(qc∗ − qz)| ≤
k√
n
)
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Combining this equality with the previous convergence result using the test
function

Φ(sT ) = 1
{| 1√

n
sT
c∗−nqc∗− 1√

n
sTz +nqz+

1c∗▷z√
n

+n(qc∗−qz)|≤ k√
n
}

and
lim

n→+∞

k√
n
= 0

by assumption, we deduce that
lim

n→+∞
PC(|

1√
n
sTc∗ − nqc∗ −

1√
n
sTz + nqz +

1c∗▷z√
n

+ n(qc∗ − qz)| ≤
k√
n
))

= PC(|Nc∗ −Nz +
1c∗▷z√

n
+ n(qc∗ − qz)| ≤ 0) = 0

Therefore,
lim

n→+∞
PC(|sTc∗ − sTz + 1c∗▷z| ≤ k) = 0

It follows for the probability of the success event that
lim

n→+∞
PC(Sk) ⩽ lim

n→+∞
PC(

⋃
z ̸=c∗

|sTc∗ − sTz + 1c∗▷z| ≤ k)

≤ lim
n→+∞

∑
z ̸=c∗

PC(|sTc∗ − sTz + 1c∗▷z| ≤ k) = 0

We then get:
lim

n→+∞
PC(Sk) = 0

which concludes the proof.
Then, we get immediately the following corollary if we include the case

where x∗ might win in the initial poll, because it is always possible to commu-
nicate scores that keep the same winner.
Corollary 70. For any cultureC(n,Πm), if themaximumdistance k to the truthful
scores is such that k = o(

√
n), then limn→∞PC(Sk) = PC({WP (s

T ) = x∗}).

We might note that, e.g., PC({WP (s
T ) = x∗}) ≈ 1

m when considering the
impartial culture.

We now focus on a case where poll manipulation can be successful, and
prove that we can even efficiently compute it, thanks to an adaptation of the
global heuristic where the sub-heuristic to call is Restricted 2PW-H(x∗, ℓ) which,
starting from sT , tries to announce ℓ as the winner and x∗ as the only other
potential winner, while taking into account the maximum allowed distance k.

Let SRestr-2PW-H(x∗, ℓ) denote the event of success of this sub-heuristic.
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Algorithm 3: Restricted 2PW-H(x∗, ℓ)
Input: (N,M,≻,▷, k), Target candidate x∗, Candidate ℓ

1 s← sT ; R← 0 ;
2 while ∃c ∈M \ {ℓ} s.t. sc ≥ sℓ − 1c̸=x∗▷ℓ + 1ℓ▷c=x∗ and R < k do
3 y ← argminx∗,ℓ{sx∗ , sℓ − 1}; sy ← sy + 1; sc ← sc − 1;

R← R + 1;
4 while sx∗ < sℓ − 1x∗▷ℓ and R < k do
5 j∗ ← argmaxj∈M\{ℓ} sj ;
6 if sℓ > maxj∈M\{ℓ} sj + 2 then j∗ ← ℓ;
7 sx∗ ← sx∗ + 1; sj∗ ← sj∗ − 1; R← R + 1;
8 ifWP (b

s) = x∗ then return (True, s);
9 else return (False,None);

Theorem 71. For a balanced cultureC , if the maximum distance k to the truthful
scores is such thatn = o(k)where and c∗ :=WP (b

T ), then there exists ℓ ∈ BC(x
∗)

such that the probability of success of Restricted 2PW-H(x∗, ℓ) tends toward 1, i.e.,
limn→∞PC(SRestr-2PW-H(x∗, ℓ)) = 1 and thus limn→∞PC(Sk) = 1.

Proof. We can first observe that each score the polling institute may send can
be summarized by its set of potential winners and its winner, since two an-
nounced scores with the same potential winners and winner produce the
same voters’ deviations. A type T (s) for a score vector s is thus defined as
a pair (PW,w) ∈ 2M ×M where w ∈ PW , representing its potential winners
and its winner. The set of all possible score types is denoted by T . We will
then show that:

PC({
⋃
s∈Ik

T (s) = T }) = 1

Let c∗ be the truthful winner, i.e., c∗ := WP (b
T ). Informally, a sufficient con-

dition for the existence of a strategy of each type is that all candidates are
sufficiently close to the winner. More precisely, we would like them all to be
closer than k

m , so that the cost of making potential winners any pair of candi-
dates never exceeds k. We then get:

{
⋂
z ̸=c∗

{|sTc∗ − sTz + 1c∗▷z| <
k

m
}} ⊂ {

⋃
s∈Ik

T (s) = T }

We again use the same technique adding and subtracting n · qc∗ and n · qz anda central limit theorem on the truthful scores sT following a multinomial law
(Observation 48). However, we have this time a remaining term √n(qc∗ − qz)that is bounded by assumption (n = o(k)).

We then get:
lim

n→+∞
PC(|sTc∗ − sTz + 1c∗▷z| <

k

m
) = 1
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Since a countable intersection of events of probability 1 is of probability 1, we
have:

lim
n→+∞

PC(
⋂
z ̸=c∗

{|sTc∗ − sTz + 1c∗▷z| <
k

m
}) = 1

Then, we have:
PC(

⋃
s∈Ik

T (s) = T ) = 1

Using the fact that a successful strategy exists in the unrestricted case and
since all strategies are accessible, we get:

lim
n→∞

PC(SRestr-2PW-H(x∗, ℓ)) = 1

Therefore, we have also:
lim
n→∞

PC(Sk) = 1

The case k = α · n with α ∈]0, 1] works exactly as in Theorem 71 if
α > maxc,c′∈M |pc − pc′ |, where pc denote the probability that candidate c

is elected. This has a clear interpretation: if the polling institute is allowed to
lie by a fraction α on scores then we will fall in the manipulation regime for a
sufficiently large number of voters.

Like for the unrestricted problem, the general result of Theorem 71 holds
for the concrete cultures under the condition mentioned in Section 5.3.
Corollary 72. For a culture C and n = o(k) and c∗ := WP (b

T ), there exists
ℓ ∈ BC(x

∗) such that the probability of success of Restricted 2PW-H(x∗, ℓ) tends
toward 1, i.e., limn→∞PC(SRestr-2PW-H(x∗, ℓ)) = 1 and thus limn→∞PC(Sk) = 1,
when:

• C corresponds to the impartial culture, or

• C is a single-peaked culture and x∗ is not an extreme candidate or x∗

is extreme but PC(≻i| worst≻i = x∗) ⩽ 1
2 , which includes Walsh’s

and Conitzer’s cultures, or

• C corresponds to a Mallows cultureMϕ,σ where x∗ ̸= worstσ.

5.6 . Toward a Generalization of Strategic Behavior

Until now, we only considered strategic moves from pivotal voters. How-
ever, one can argue that voters might want to deviate when they are close
enough to be pivotal. Such a strategic behavior can be captured by consider-
ing pivotal thresholds pi ∈ N for each voter i, as done by Wilczynski [2019] in
an idea close to local-dominance [Meir et al., 2014]. This slightly modifies the
definition of potential winners:
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Definition 20 (General potential winners). A candidate y is a general potential
winner for voter i w.r.t. score s if i believes that adding pi votes to y will make
candidate y the new winner, i.e., s−i

WP (s−i)
− s−i

y + 1WP (s−i)▷y ⩽ pi. We denote
PW s,pi

i the set of general potential winners for i w.r.t. score s.

The definition of best response naturally follows by considering general
potential winners. Our initial setting corresponds to the case where pi = 1.

Let us first analyze the impact of pivotal thresholds on strategic voting.
For this purpose, we suppose that the polling institute is sincere and sends
truthful scores s = sT , and that all thresholds are equal and denoted by
p, i.e., pi = p, for every voter i. Let us define the expected proportion of
strategic voters PSV w.r.t. culture C(n,Πm), n, m, and p. Let Up

i denote the
event where the top candidate of voter i is not a general potential winner for
i, i.e., Up

i = {top≻i /∈ PW s,p
i }, and Dp

i the event where voter i could favor
a potential winner other than the current winner, that she prefers to it, i.e.,
Dp

i = {∃w ∈ M \ {top≻i} : w ≻i WP (s) and w ∈ PW s,p
i }. By definition, theproportion of strategic voters counts the voters for who the two events are

true, i.e., PSV (C, n,m, p) = EC [
1
n

∑n
i=1 1Up

i ∩D
p
i
].

The following proposition provides several insights on the proportion of
strategic voters at the limits, by showing that the variations of the dependent
events Ui and Di are opposed with respect to p. The point 5 is in spirit quite
close to thework of Xia [2012] since it is related to themargin of victory. Indeed,
the lower bound in Theorem 14 from [Xia, 2012] would be enough to conclude.
Proposition 73. 1. U = EC [

1
n

∑n
i=1 1Up

i
] is decreasing w.r.t. p.

2. D = EC [
1
n

∑n
i=1 1Dp

i
] is increasing w.r.t. p.

3. PSV (C, n,m, p) ⩽ min(U,D).

4. lim
p→+∞

PSV (C, n,m, p) = 0 and PSV (C, n,m, 0) = 0.

5. lim
n→+∞

PSV (C, n,m, p) = 0 when p is fixed.

Proof.
1-2. The statements follow from the inclusions Up′

i ⊆ Up
i and Dp

i ⊆ Dp′

i , foreach p′ > p.
3. Using the inclusions U ∩ D ⊂ U and U ∩ D ⊂ D, we show that:
PSV (C, n,m, p) ⩽ U and PSV (C, n,m, p) ⩽ D.

4. If p ismaximum, then all candidates are potential winners and thus each
voter keeps her truthful vote, while when p = 0 there are no potential
winners to deviate to.

5. Using Lemma 69, we know that the winner c∗ and any other candidate z
will be spread out at least of order√n asymptotically. We then deduce

141



0 5 10 15 20

0

2

4

6

value of pivotal threshold pPro
por

tion
ofs

trat
egi

cvo
ters

[%]

Figure 5.4: Proportion of strategic voters depending on the pivotal threshold
p in an election with 100 voters and 4 candidates under impartial culture.

that there are no potential winners other than the winner in that case,
since p is fixed.

Although the previous proposition helps to better understand the propor-
tion of strategic voters at the limits, it is still difficult to exactly determine the
behavior for other values of p, in particular when PSV is maximum, because
of the dependency between U andD.

These results gives us some ideas of how this proportion evolves in some
cases but we are still not able to derive some computations and give a precise
view of the graph. To complement Theorem 73, we run simulations to find
this maximal proportion w.r.t. p. where we compute the average proportion
of strategic voters with impartial culture, n = 100,m = 4, for each p ∈ [n] and
3,000 runs per p.

Experimental results in Figure 5.4 show a peak for manipulation around
p = 5, which can be interpreted as voters who believe that a candidate which
is at at distance less than 5% to win is a plausible winner, which seems rea-
sonable.

Now that we have a better understanding of the impact of the pivotal
threshold, let us now analyze the poll manipulation problems. Let SG (resp.,
SG
k ) denote the associated event of success for the unrestricted (resp., re-

stricted) problem with generalized strategic behavior.
Proposition 74. For a balanced culture C(n,Πm), p > 0 and p = o(n), we have
PC(S

G) ⩾ PC(S) and PC(S
G
k ) ⩾ PC(Sk).

Proof. In an idea similar to the proof of Theorem 71, for each score of a given
type in the initial setting, we can always choose a score of the same type
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which works for the generalized strategic behavior, since they would trigger
the same deviations. Indeed, even if the polling institute is not sending the
same score, it might construct a score with the same potential winners and
the same winner since p is negligible against n.

It follows from Theorem 74 that Theorems 62 and 64, for successful un-
restricted poll manipulation, also hold under a generalized strategic behavior
with the given weak hypotheses. Similarly, the convergence result toward 1
for the probability of a successful restricted poll manipulation (Theorem 71)
and the generalization of Theorem 68 can also be extended to a generalized
strategic behavior.

5.7 . Conclusion and Future Works

5.7.1 . Conclusion
In the context of political elections where voters are assumed to be strate-

gic, we have studied the poll manipulation problem: Can a polling institute
lie about candidates’ scores it communicates to voters in order to influence the
outcome of the election? Two variants are investigated: an unrestricted one
where any scores can be sent, and a restricted one, more realistic, where the
polling institute cannot announce scores too far from the reality. We show
that both problems are computationally hard and answer an open question
from Baumeister et al. [2020]. However, we go beyond this worst-case analy-
sis by using probabilistic tools to balance computational hardness.

First, from a computational point of view, we solved the open problem of
the complexity of the unrestricted version and added two new parameterized
complexity results for the restricted version which is XP andW[1]-hard param-
eterized by the distance between the truthful poll and the one sent by the
polling institute.

Second, we show relationships between cultures and prove that, under
a very weak hypothesis, most of the cultures studied in the literature are in-
cluded in a general condition.

Third, we use this preliminary work to study the probability of manipula-
tionwith an easily computable heuristic under this broad condition on culture,
giving a balancing argument for NP-hardness. Under a broad condition on cul-
tures, satisfied by many concrete preference distributions, we prove a lower
bound on the probability of success of an easily computable heuristic for the
unrestricted problem. This enables us to obtain a rapid convergence toward
1 of the manipulation probability, meaning that large elections are highly ma-
nipulable when the polling institute can freelymanipulate without altering the
trust of voters.

When it may not be the case, i.e., in a restricted context, our asymptotic
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results show that manipulability strongly relies on whether the allowed dis-
tance to truthful scores depends on the election size. Manipulation tends to
fail when this distance is negligible w.r.t. the number of voters. However,
when the distance is significant, e.g., is a given proportion of the election size,
which appears as a very natural assumption, efficient and successful manipu-
lation tends to be always possible, showing that political elections are highly
susceptible to poll manipulation in practice.

5.7.2 . Future Works
This work provides different aspects of poll manipulation under plurality

voting. Nevertheless, it opens the door to several promising directions for
future research:

• One could consider other voting rules or other types of information
communicated in the poll would be natural.

• Another avenue of work could be to examine different strategic voting
behaviors, by, e.g., examining that abound in the literature, such as local
dominance [Meir, 2018].

• Finally, a challenging future direction would be to adapt our analysis to
dependent cultures such as the Pólya-Eggenberger urn.
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6 - Modelling the Variability of Strategic Vot-
ing Outcomes under Uncertainty: A Gen-
eral Approach

Abstract

We present a newmodel of strategic voting where uncertainty is modeled
by probability sets and the decisions are taken according to lower and upper
expected utility gains. Focusing on the particular case of belief functions, we
show that this generic model encompasses in one sweep previous models
that considered either sets or probabilities to model uncertainty, and enables
us to generalize somewell-known convergence results from the literature. We
also discuss the case of uncertain voters, and emphasize the challenges that
come with considering richer and therefore more realistic models of uncer-
tainty.

Résumé

Nous proposons un nouveau modèle de vote stratégique dans lequel
l’incertitude est représentée par des ensembles de probabilités, et les déci-
sions sont prises sur la base des gains espérés inférieurs et supérieurs. En
nous concentrant sur le cas particulier des fonctions de croyance, nous mon-
trons que ce modèle générique englobe, de manière unifiée, les approches
antérieures qui utilisaient soit des ensembles, soit des probabilités pourmod-
éliser l’incertitude. Il nous permet également de généraliser certains résultats
classiques de convergence de la littérature. Nous abordons aussi le cas des
électeurs incertains, et soulignons les défis soulevés par l’adoption de mod-
èles d’incertitude plus riches et donc plus réalistes.

Most of the content of this chapter is based on a paper co-authored withSébastien Destercke, which was accepted at the 16th Multidisciplinary Workshop onAdvances in Preference Handling (M-PREF 2025) [Destercke and Surugue, 2025]
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6.1 . Introduction

In this final chapter, we end our study of voting outcomes by incorporating
uncertainty into strategic voting, thereby generalizing the existing literature
on the topic and allows for a more expressive model. As already emphasized
in Chapter 2 and Chapter 4, the strategic voting model is motivated by the
need to reflect the unavoidable incentives that voters face to manipulate out-
comes. However, as already mentioned, all models considered so far assume
complete preferences and perfect information on the voters’ side, except for
the model from [Meir, 2017] which remains purely qualitative. Indeed, this
raises several practical challenges. First of all, building polls is creating some
uncertainty by construction since you have to query a subset of voters and
make some inferences about the remaining voters. This is the assumption of
the two main models in the literature, where authors have considered both
a probability around received polls [Myerson and Weber, 1993] for the first
model, and the use of an uncertain neighborhood [Meir, 2017] in the second
model. However, the first model makes all strategic moves in one-shot, with-
out voters being able to change their votes afterwards, which is hard to justify.
The second model is iterative but with a more qualitative behavior, meaning
that it considers any score in the neighborhood with the same importance. In
this chapter, our goal will be to generalize these models by introducing some
new concepts that both include the existing literature and give a framework
to capture new insights. Specifically, we will be interested in giving a gener-
alization of Meir’s models (see Chapter 2 and Chapter 4) by including some
quantitative aspect, namely introducing the idea that some scores are less
important than others, if they are far from the broadcast poll for example. In
this context, we will give convergence results of our iterative voting process.

However, our model also allows us to conceptualize new ideas as an un-
certainty about voter’s themselves, similar to the work of Kreiss and Augustin
but for iterative voting. For example, a voter may not know her full prefer-
ence ordering or may be unable to compare certain candidates. Our model
capture situations where voters have either uncertain ballots or incomplete
preferences as in [Conitzer et al., 2011; Dey et al., 2018], which is often the
case in practice. We will show how to model such behaviors and explain why
it remains complicated to implement this in practice.

Thus, in both situations, the type of information and its reliability is key
to understand how information impacts voter opinions is crucial. Previous
work in this direction has considered specific types of information, such as
identifying the winner only under certain voting rules (different from plurality
since it is complete information in that case), or using the majority graph as a
basis (see [Endriss et al., 2016; Reijngoud and Endriss, 2012]).

The rest of the chapter is organized as follows: Section 6.2 describes in de-
tail the required background of uncertainty theory for our new model based
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on the one already introduced in Chapter 2, as it is a central contribution of
the chapter. Section 6.3 then motivates it, first by showing how it includes
and generalizes previous frameworks, second by providing practical exam-
ples where one would need to consider generalized representations of uncer-
tainty in order to have an accurate model. Section 6.4 provides convergence
results for our newly introduced model, showing that while being more gen-
eral, it preserves some key properties discussed in the literature. Finally, Sec-
tion 6.5 provides a discussion rather than a conclusion, as we think this work
opens up many avenues of research that would bring strategic voting closer
to real-life behavior of voters, hopefully offering a higher descriptive power
for such models.

6.2 . A Strategic Voting Model with Uncertainty

We start by introducing the elements of the newly proposedmodel. As the
model itself is one of the main contribution of this chapter, we will describe it
in details, before illustrating some of its aspects.

6.2.1 . A voting Situation Equipped with an Uncertainty Model
We will follow all the same notations as in previous chapters Chapter 4

and Chapter 5 to described the strategic voting framework under plurality.
Before introducing our uncertainty model, we make the following remark

to situate it within a broader theoretical framework.
Remark 75. Probabilistic theory assumes that any state of uncertainty can, in
practice, be modeled by a probability distribution. However, in many real-world
situations, the available probabilistic information is only partial. Data may be
imprecise, unreliable, or too scarce to justify the computation of frequencies. In
such cases, the uniform distribution is often used as a default model of ignorance,
though this choice is highly debatable.

We equip our election with an uncertainty model on scores. We consider
that the voter receives a convex probability set P over the set of possible
scores Imn = {s :

∑
x∈M sx(b) = n}. We omit n and m when the number

of voters and candidates is not specified or not relevant to the current discus-
sion. Two common ways to build P are (1) to consider an uncertainty model
around an original score s and (2) by having uncertainty about each ballot,
assumed independent, thus building a global P over Mn through each indi-
vidual Pi (the uncertainty of voter i). Note that since a ballot profile maps to
a single score vector, a set defined over Mn can be unambiguously mapped
to a set P over Imn .

Possible scores are sufficient if we work under plurality rule, otherwise we wouldhave to consider probability sets on the spaces of vote profiles.
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From a probability set P on Imn , one can then define, for any function f :

Imn → R (typically a utility of some kind), a lower expectation
EP(f) = inf

P∈P
EP (f) (6.1)

where EP is the standard, linear expectation operator. Upper expectation
EP(f) can be defined like-wise, taking a sup. Of particular interest are lower
and upper expectations over identity functions of eventsA, that corresponds
to lower and upper probabilities over such events, and that we will denote
P (A), P (A). We will also use the following notations for sets of scores: an
interval for a given candidate simply means that the score of this candidate
can vary within these bounds. For instance, if n = 5 andm = 3, the set-valued
score E = ([2, 3], [1, 3], [0, 2])means that the score of b will be between 1 (one
voter will vote for b for sure) and 3.

Probability setsP are very generic uncertainty models that include as spe-
cial cases [Destercke and Dubois, 2014] quite a number of existing uncertainty
representations. We detail some of those that will be of particular interest in
this chapter.
The specific case of sets A first special case is the one of sets, where we
know that s ∈ E for some subset E ⊆ I . The corresponding probability set is
defined as

PE = {P : P (E) = 1},

summarised by the constraint P (E) = 1. In such a case, Equation (6.1) has the
solution EPE

(f) = infx∈E f(x).
The specific case of probability Probability sets obviously generalize
probabilities by construction. Therefore, if we takeP (A) = P (A) for all events
A, we come back to the very well-known probability setting, in which P re-
duces to a singleton.
The specific case of belief functions A belief function overMn (or Imn )
consists in defining a positive mass functionM : 2M

n → [0, 1] that sums up
to one, i.e.,∑E⊆Mn,E ̸=∅ µ(E) = 1. From such a massM can then be defined
two bounds over events A ⊆Mn that are defined as

P (A) =
∑
E⊆A

µ(E) (6.2)
P (A) =

∑
E∩A̸=∅

µ(E) (6.3)
and from which one can define a corresponding set of possible probabilities

PM = {P : ∀A,P (A) ≤ P (A) ≤ P (A)} (6.4)
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Should we collect a mass functionMi per voter defined overM , µi(E) would
then express the mass of evidence we have that the voter ballot will be in E.
From those, one can easily build a joint mass function over Mn (hence over
Imn ): ifEi are some subsets ofM receiving positivemasses for voter i, then the
joint mass given overE1× . . .×En is simplyM(E1× . . .×En) =

∏N
i=1Mi(Ei),which is well-suited to denote independence between agents [Smets and

Kennes, 1992]. Each imprecise ballot can then be mapped to a corresponding
set of possible score vectors. Belief functions, while strictly less expressive
than generic lower probabilities P (A), are still a quite expressive model, as
they include probabilities and sets as special cases: probabilities correspond
to masses bearing only on singletons, while a set E correspond to the mass
µ(E) = 1.

An advantage of belief functions is that Equation (6.1) as well as the upper
expectation can be easily solved by adopting the following formula usingM,
i.e.,

EM(f) =
∑

E⊆Mn

µ(E) inf
x∈E

f(x),

EM(f) =
∑

E⊆Mn

µ(E) sup
x∈E

f(x).

Note that sinceMn is finite the sup (resp. inf) is a max (resp. min).
Of interest within the literature devoted to belief functions is the notion of

pignistic probability p∗ ofM, that allows one to go from PM to a single prob-
ability within it. This pignistic probability corresponds to the Shapley value of
the lower probability P (A) viewed as a game, and is given by:

p∗(s) =
∑

E,s∈E

µ(E)

|E|
.

Therefore, we can also see that taking the pignistic probability also consid-
ering a Laplacian assumption within each set E receiving positive evidence.
Note also that if the massM is equivalent to a probability p, then p∗ = p,
meaning that when one starts with a probability as uncertainty model, the
pignistic criterion is just the standard expected utility for this probability.

Finally and before stepping to the decision part of our model, we will men-
tion two particular cases of belief functions that are of interest to us: the first
is the case of necessity measures, where the masses are given to nested el-
ements, that is µ(Ei) ̸= 0 and µ(Ej) ̸= 0 iff Ei ⊂ Ej or Ei ⊂ Ej , and the
case of inner measures [Denneberg, 2013, Ch. 2.], where masses are given on
a partition of the space, that is µ(Ei) ̸= 0 and µ(Ej) ̸= 0 if Ei ∩ Ej = 0 and
∪E,µ(E)>0E = Imn (or a subset of interest).
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6.2.2 . Some Strategic Decisions
In this model, we want to encode the strategic behavior of voters under

uncertainty. To do so, let us define a function st(s, ai, a
′
i) : Imn ×M2 → Imnthat sends back an updated score if voter imoves his vote from ai to a′i in itsvotes. Then, let ui : M → R be for each voter i the associated utility that will

often reflect how satisfied the voter is with the current winner WP (s). Thisutility function could be more complex, e.g., be defined onM2 to denote pair-
wise preferences over candidates and represent how much some candidates
are preferred to other ones, however we will therefore stick to this definition
depending only onM . Moreover, even though we have strict linear orders≻ifor each voter, we can always build an associated utility functions by Debreu
et al. [1954]. Therefore, to understand how voters may change their vote, we
need to evaluate the benefit of moving from ai to a′i that we denote

ui(a
′
i|ai, s), (6.5)

that is the utility of making the move from ai to a′i, given the initial state of
affairs s. In particular, if we are certain about our current state of affairs, if we
know the score vector, it suffices for (6.5) to be positive for the voter to make
a strategic move, that is

a′i ⪰ ai iff ui(a
′
i|ai, s) ≥ 0

However, in our model this is not the case since voters receive a probabil-
ity set P . Assuming that we have some probability set P defined over I , we
will define four decision criteria (namedDC) under uncertainty.

• The first criteria that we will consider is a pessimistic criteria to decide
whether an action is better than another as follows:

a′i ≻pess ai iff EP(ui(a
′
i|ai, s)) ≥ 0

and EP(ui(a
′
i|ai, s)) > 0

where S denotes uncertain scores whose knowledge is modeled by P .
In essence, this corresponds to the maximmin criterion put forward
by Gilboa and Schmeidler [1989].

• A pignistic criteria to decide whether an action is better than another as
follows:

a′i ⪰pig ai iff Ep∗(ui(a
′
i|ai, s)) ≥ 0,

where p∗ is the pignistic probability. Note that it includes standard prob-
abilistic decision as a special case.
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• A mixture criteria to decide whether an action is better than another as
follows:

a′i ⪰α,p∗ ai iff
iff α · EM(ui(a

′
i|ai, s))

+(1− α) · Ep∗(ui(a
′
i|ai, s)) ≥ 0

with α ∈ [0, 1]. Note that α can be seen as a level of completeness of
the obtained, as it allows one to go from a very partial order (α = 0) to
a complete one (α = 1).

• Another mixture of criteria to decide whether an action is better than
another as follows:

a′i ⪰H(α) ai iff
iff α · EM(ui(a

′
i|ai, s))

+(1− α) · EM(ui(a
′
i|ai, s)) ≥ 0

with α ∈ [0, 1]. In essence, this corresponds to the well-known Hurwicz
criterion [Hurwicz, 1951] that intends to balance between optimism (E)
and pessimism (E), and that has been justified within a belief setting
by Denoeux and Shenoy [2020].

Note that for the three last rules, the strict relation ≻ corresponds to hav-
ing strict positive values on the right side. Those decision rules mirror some
of the commonly used decision rules within the imprecise probabilistic set-
ting [Troffaes, 2007], and we hope to leverage other commonly used rules in
future works.

An equilibrium is a situation where no voter has an incentive to devi-
ate from its ballot, i.e., ∀i ∈ N,∄ a′i such that a′i ≻ ai (we assume vot-
ers will only make a strategic move if their preferences are strict). To sum
up, we can fully describe an election under plurality with a lexicographic tie-
breaking and strategic voting under uncertainties with the following tuple
(N,M,P,▷,P, (ui)i∈N , DC).

6.3 . Motivations of the Model

Our model is enriched because it includes the existing models from the
literature but also provides a deeper understanding of the uncertainty in iter-
ative voting in Plurality elections.
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6.3.1 . Relations with Existing Models
One of the strengths of our model is its power to unify two theories that

were first considered as different, namely the one fromMeir [2017]; Meir et al.
[2010] and the one from Myerson and Weber [1993].

For the first one, we need to define a neighborhood as Meir [2017] with
respect to a distance d : Sr(s) = {s′ ∈ I | d(s, s′) ⩽ r}, d can be ℓ1, ℓ∞or another one. For example, the ℓ1 distance corresponds to the number
of voters that need to be added or removed in order to convert one score
vector into another. The ℓ∞ distance, on the other hand, measures the largest
difference in the number of votes received by any single candidate between
the two score vectors. We could also use an Earth Mover’s distance, which is
a variant of the ℓ1 distance that assumes a fixed total number of voters. By
abuse of notation, wewill useSr when it is clear from the context. The seminal
work of Meir et al. [2010] is working on the special case r = 0, meaning the
poll information is complete for plurality and certain. This corresponds to
considering ∀i ∈ N,µi(S0) = 1, particular utilities functions:

∀i ∈ N, ui(a
′
i|ai, s)

=


1 if st(s, ai, a′i) ≻i s andWP (st(s, ai, a

′
i)) = a′i,

0 if st(s, ai, a′i) ≻i s andWP (st(s, ai, a
′
i)) ̸= a′i,

0 if st(s, ai, a′i) ∼i s,

−1 else,
and the pessimistic decision rule ⪰pess to recover the model. Recall that
in Meir [2017], the convergence is guaranteed and we call these strategic
moves “direct best response" since all strategic moves where a voter deviates
is to the new winner.

Meir et al. [2014] then extended this framework to add uncertainty by con-
sidering some strictly positive value ri > 0 for voter i. This comes down in our
model to take, ∀i ∈ N,µi(Sri) = 1, particular utilities functions

∀i ∈ N, ui(a
′
i|ai, s) =


1 if st(s, ai, a′i) ≻i s,

0 if st(s, ai, a′i) ∼i s,

−1 else.
and again the pessimistic decision rule ⪰pess to recover the model.

Let us give a short example.
Example 32. Consider an election with twelve voters and three candidates where
one voter i has the following preference and votes initially truthful: c ≻i a ≻i b.
The initial poll result is as follows: (4, 6, 2) (see the picture).

The voter would not change her vote with the initial model (i.e., r = 0). How-
ever, if we choose a level of uncertainty r = 1, using the EMD distance for instance,

152



Vote0

2

4

6

x1 x2x3

4

6

2Nu
mb

ero
fvo

tes

x1 x2 x3

Figure 6.1: Vote distribution for the score profile (4, 6, 2)

a strategic move occurs, indicating that this model captures new behaviors. In-
deed, the neighborhood of all possible score will be

S1 = {(4, 6, 2), (3, 7, 2), (3, 6, 3), (5, 5, 2), (4, 5, 3), (5, 6, 1), (4, 7, 1)}

Therefore, in almost all score profiles, the voter cannot influence the outcome by
changing her vote from c to a, except in the cases (4, 5, 3) and (5, 6, 1). Let us detail
this point: with score (4, 5, 3), voter i can change her vote from c to a in order to
make awin instead of b, which is more preferable to her. A similar situation occurs
with score (5, 6, 1). The incorporation of uncertainty in the model thus justifies a
strategic move from c to a.

For the probabilistic model of Myerson andWeber [1993], we defineP as a
probabilityP(s) ∼M(s, n)where s is the observed score andM amultinomial
distribution. The utilities can be chosen arbitrarily provided and verify the
voter preferences:

ui(a
′
i|ai, s) ≥ 0 iff st(s, ai, a

′
i) ≻i s

Then, we need to remark that in Myerson and Weber [1993] all voters are act-
ing simultaneously and the decision is that each voter maximizes its expected
utilities. The computation can be greatly simplified by only looking at the piv-
otal state and because we look only at plurality:

EP(ui(a′i|ai, s))

=
∑
ai∈M

P(ai, a
′
i)ui(a

′
i|ai, s)
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where P(ai, a′i) is the probability to be pivotal by doing the action from ai to
a′i. We suggest two ways to build richer model of uncertainty about the poll,
either from the polling institute or from the voters themselves. Building polls,
evenwhen done honestly, comeswith uncertainty because you cannot ask ev-
eryone’s preferences (see the case of dishonest polls [Mousseau et al., 2024]).
We can also interpret uncertainty from voters as they may be uncertain or
have incomplete knowledge of their preferences. The next section presents
some examples to illustrate these ideas.

6.3.2 . Examples
Our model not only includes other models from the literature but is also

able to capture other situations. First of all, one of the weakness of the first
model from Meir [2017] is that any score of the neighborhood is considered
identically. Ideally, we would like to affect weights relative to the distance to
the broadcast score. Let us detail that idea in the two following examples.
Example 33. Letm = 3, n = 30 and the broadcast score being s = (10, 9, 11). We
will define information belief available directly on I330 ,M(S1) = 0.5,M(S2) = 0.3

andM(S3) = 0.2.

This model describes exactly what we expect with a belief function that
models a certainty decreasing with respect to the distance to the broadcast
poll s. This corresponds to building possibility distributions, that among im-
precise probabilistic models are the most direct extensions of sets. They are
therefore the ideal candidate to extend Meir [2017] approach.

However, we may want to have a model with a more probabilistic flavour.
In this case, one can consider the partition generated by the Si sets, and as-
sociate a probability mass to each member of this partition, generating a so-
called inner measure [Denneberg, 2013, Ch. 2.] on any event of the initial
space I . An intrinsic interest of this model is that it remains a probabilistic
one, even if defined on an algebra where the atoms are sets of scores.
Example 34. Letm = 3, n = 30 and the broadcast score being s = (10, 9, 11). We
will define uncertain information directly on I330 ,M(S1) = 0.5,M(S2 \S1) = 0.3

andM(S3 \ S2) = 0.2.

Moreover, we can also collect the lack of knowledge or incomplete infor-
mation about voter’s preferences. In fact, in most elections we usually have
undecided voters especially far from the election day. Let us develop that idea
in the two followings examples. In the following example, voter 1 is undecided
between candidate a and candidate b, voter 2 and 3 are certain.
Example 35. Let m = 3 and n = 3, µ1({a, b}) = 1, µ2({b}) = 1 and
µ3({c}) = 1. The joint belief function derived from this information over I33 is
M({(1, 1, 1), (0, 2, 1)}) =M(([0, 1], [1, 2], 1)}) = 1.
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Now, we move to a last example that shows our model is able to capture
more complex uncertainty. Indeed, we might have a voter (i.e., voter 1) that is
able to tell she is not voting for c but it still hesitating between a and b, with
a slight preference for a, and other voters being certain. The next example
proposes a belief functions accounting for that.
Example 36. Let m = 3 and n = 3, we could have µ1({a}) = 0.5, µ1({a, b}) =
0.5, so that P 1({a}) = 0.5, P 1({a}) = 1, and P 1({b}) = 0.5, meaning that voting
for a is definitely more probable, yet voting for b remains plausible, albeit less.
Provided we have µ2({b}) = 1 and µ3({c}) = 1, the joint mass over scores would
beM({(1, 1, 1)}) = 0.5,M(([0, 1], [1, 2], 1)}) = 0.5.

Let us now illustrate one of our decision rules on this same example, to
give the reader an idea of how this plays out.
Example 37. Consider for instance that the preference of voter 2 are b ≻2 c ≻2 a,
which is coherent with its ballot and a Hurwicz criterion with α = 1

3 , meaning that
the weight of optimism is larger. We will consider the following utilities:

∀i ∈ N, ui(a
′
i|ai, s) =


1 if st(s, ai, a′i) ≻i s,

0 if st(s, ai, a′i) ∼i s,

−1 else.

We want to evaluate the deviation from b to c. Then, with the linearity of the mass
functions, we compute

EM(ui(a
′
i|ai, s)) =

1

2
· 1 + 1

2
· (−1) = 0

and
EM(ui(a

′
i|ai, s)) =

1

2
· 1 + 1

2
· 1 = 1

Indeed, note that for the set {(1, 1, 1)} having mass 0.5, the move makes c elected
instead of a, and the utility is a constant 1. For the set ([0, 1], [1, 2], 1) that also has
mass 0.5, the move is still beneficial for the possible score (1, 1, 1), but would bring
negative utility for (0, 2, 1), as c would be elected instead of b, a clear downside for
voter 2. Thus, we get:

1

3
· EM(ui(a

′
i|ai, s))

+(1− 1

3
) · EM(ui(a

′
i|ai, s))

=
1

3
· 0 + 2

3
· 1 =

2

3
≥ 0.

The conclusion is that voter 2 will do the deviation from b to c with such a decision
criterion.
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Note that we restrict our uncertainty models here to belief functions,
yet some natural assessments would need to opt for the richer language of
generic convex sets of probabilities, such as providing partial order between
the probabilities of voting for some candidates [Miranda and Destercke, 2015].
Considering such cases is however beyond the scope of the current chapter.

6.4 . Convergence with Quantitative Uncertainty on Scores

In this section we generalize existing results on convergence from Meir
[2017] by adding quantitative uncertainty about the score as in Example 33
and Example 34. Let us recall that a neighborhood Sr with respect to a dis-
tance d is defined as in Meir [2017]: Sr(s) = {s′ ∈ I | d(s, s′) ⩽ r}, where d can
be ℓ1, ℓ∞, earth moving distance (EMD) or another one. Let us consider from
now on the ℓ1 distance that is easy to interpret in terms of transfer of votes.
For each voter i, we will let ri be the support of its uncertainty, so that Sri isthe biggest set of voter i’s uncertainty.

6.4.1 . Extending the Meir Framework
Let us consider any belief functions of voter i,Mi : 2

Sri → [0, 1] that sums
up to one, i.e.,∑E⊆Sri ,E ̸=∅ µi(E) = 1.

We will consider two particular cases of interest. The first is the case of
nested sets, i.e., ∀i ∈ N, ∀k ⩾ 1, µi(Sk) = βi

k, with ∑ri
k=1 β

i
k = 1. Indeed,

we might want to describe the fact that the belief mass is depending of the
distance to the true score. Second, we look at the case of partitioned belief
function, i.e., ∀i ∈ N,∀k ⩾ 2, µi(Sk \ Sk−1) = βi

k, with ∑ri
k=1 β

i
k = 1 and

∀i ∈ N,µi(S1) = βi
1. In both cases, we will assume decreasing (βk)1⩽k⩽ri ,meaning that our evidence decreases as we get further from the observed s.

For the rest of this section, wewill consider the following utilities thatmake
sense in terms of improved or deteriorated outputs:

∀i ∈ N, ui(a
′
i|ai, s) =


1 if st(s, ai, a′i) ≻i s,

0 if st(s, ai, a′i) ∼i s,

−1 else.
Theorem 76. Voters considering uncertainty given by a nested or partitioned be-
lief function, and making strategic decisions according to either pessimistic (⪰pess)
or mixed (⪰ α,p∗ ,⪰h(α)) decision rules with α large enough, will converge to an
equilibrium.

Proof. At first, we will take ∀i ∈ N,∀k ⩾ 1, µi(Sk) = βi
k, with∑ri

k=1 β
i
k = 1.

We consider a feasible move ai → ai′ . We remark that the hypothesis that
EM(ui(a

′
i|ai, s)) ⩾ 0 implies that either:

• ∀s ∈ Sri , ui(a
′
i|ai, s) ̸= −1,
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• ∃r̃ ∈ [0, ri], ∀s ∈ Sr̃, ui(a
′
i|ai, s) = 1

since, if some neighborhoods have a negative utility, this must be compen-
sated by a positive contribution, which happens only if all moves within a
neighborhood the results. However, the second case is impossible, for the
reason that if we allow a voter to transfer its vote to another candidate (r = 1),
then there is a situation for which the voter is not pivotal, and therefore
∃s ∈ S1̃, ui(a

′
i|ai, s) = 0, showing that the second case never happens. There-

fore, if
EM(ui(a

′
i|ai, s)) ⩾ 0

this means that ∀s ∈ Sri , ui(a
′
i|ai, s) ∈ {0, 1}, with at least one s giving the nullvalue.

Second, note that we cannot have EM(ui(a
′
i|ai, s)) > 0 if ∀s ∈

Sri , ui(a
′
i|ai, s) = 0, and theremust be a situation for whichmaking this strate-

gic move is a local dominance move, meaning it verifies Theorem 4 fromMeir
[2017].

We do exactly the same reasoning for the second type of belief functions,
i.e., ∀i ∈ N, ∀k ⩾ 2, µi(Sk \Sk−1) = βi

k, with∑ri
k=1 β

i
k = 1 and ∀i ∈ N,µi(S1) =

βi
1. For the mixed decision, one can prove that the decision behaves as the
pessimistic one if α is large enough.

We now want to go a step further by showing the convergence can hold
even with a less, but still pessimistic behavior, namely the Hurwicz criterion
with α > 1

2 . This allows us to consider negative outcomes in the uncertainty
neighborhood. Let us consider some belief functions as follows: ∀i ∈ N, ∀k ⩾
1, µi(Sk) = βi

k, with∑ri
k=1 β

i
k = 1

Theorem 77. Voters considering a belief function around the true score andmak-
ing strategic votes according to a sufficiently pessimistic Hurwicz criterion (i.e.,
α > 1

2 ) will converge to an equilibrium.

Proof. We assume that the weights βi
k of our belief functions, defined as ∀i ∈

N, ∀k ⩾ 1, µi(Sk) = βi
k.We consider a feasible move ai → ai′ . Using the fact that the lower (anupper) expectation is positive homogeneous, i.e., αE(f) = E(αf), we get

α · EM(ui(a
′
i|ai, s))

+ (1− α) · EM((ui(a
′
i|ai, s))

=

ri∑
i=1

µ(Si)[α inf
s∈S

(ui(a
′
i|ai, s))

+ (1− α) · sup
s∈S

(ui(a
′
i|ai, s))] (6.6)
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Let us denote by
ũi(S, ai, a

′
i) = α inf

s∈S
(ui(a

′
i|ai, s))

+(1− α) · sup
s∈S

(ui(a
′
i|ai, s))

the term associated to subset S, meaning that Equation (6.6) can be rewritten∑ri
i=1 µ(Si)ũi(S, ai, a

′
i), and that the strategic move is decided by a weighted

average of ũi values.We distinguish six possible cases:
• Case A:

∃s ∈ S, ui(a
′
i|ai, s) = 1 and ∀s ∈ S, ui(a

′
i|ai, s) ≥ 0

• Case B:
∃s ∈ S, ui(a

′
i|ai, s) = −1 and ∀s ∈ S, ui(a

′
i|ai, s) ⩽ 0

• Case C:
∃s ∈ S, ui(a

′
i|ai, s) = −1 and ∃s ∈ S, ui(a

′
i|ai, s) = 1

• Case D:
∀s ∈ S, ui(a

′
i|ai, s) = 0

• Case E:
∀s ∈ S, ui(a

′
i|ai, s) = 1

• Case F:
∀s ∈ S, ui(a

′
i|ai, s) = −1

However, cases E and F can never happen for a non-singleton S, for the same
reasons as the ones advocated in the proof of Theorem 76. We then get

ũi(S, ai, a
′
i) =


1− α Case A,
−α Case B,
1− 2 · α Case C,
0 Case D

It is clear that α > 1
2 implies that ũi(S, ai, a′i) ≥ 0 in cases A only.

Therefore, if
α · EM(ui(a

′
i|ai, s))

+(1− α) · EM(ui(a
′
i|ai, s)) ≥ 0

158



then
∃r′i ⩽ ri such that
∃s ∈ Sr′i

, ui(a
′
i|ai, s) = 1

and ∀s ∈ Sr′i
, ui(a

′
i|ai, s) ≥ 0 (Case A)

The last equivalence comes from the fact that only case A can lead to
a positive ũi(S, ai, a

′
i), and that the criterion is an average of such ũi val-ues. Therefore, it has to exist r′i ⩽ ri such that ũi(Sr′i

, ai, a
′
i) = 1 − α. If

R+
i = {j : |ũi(Sj , ai, a

′
i) = 1− α} is the set of neighborhood indices in case A,

we need for∑j∈R+
i
βi
j to be large enough for the decision criterion to be posi-tive. In otherwords, we can accept amovewith some case Conly if there exists

a local dominance move in a smaller neighborhood that receives enough evi-
dence. Using the result from section VIII in Meir [2015] which tells us that the
convergence holds for any level of uncertainty ri and any starting point (evennon-truthful states) for local dominance strategic behaviors, then we can do
a bijection of our strategic moves and get the convergence also.

6.4.2 . The Case of Pignistic Probability
Let us now consider the case of a pignistic probability on a neighborhood

Sri , which is having a uniform distribution U over all single scores within Srifor any voter i. Note that for the rest of this chapter the notation card is used
for cardinality. If Sri is our single set with positive mass, the corresponding
strategic behavior is equivalent to have the following criterion:

a′i ⪰pig ai

iff EU (ui(a
′
i|ai, s)) ≥ 0

iff card(s ∈ S | ui(a′i|ai, s) = 1)

− card(s ∈ S | ui(a′i|ai, s) = −1) ≥ 0

When this criterion is not strict, it is obvious that we have a cycle because the
same voter could move back and forth between two indistinguishable states.
Therefore, we consider the strict version of it, namely

a′i ≻U ai

iff card(s ∈ S | ui(a′i|ai, s) = 1)

− card(s ∈ S | ui(a′i|ai, s) = −1) > 0

159



Proposition 78. With a uniform pignistic criterion on a neighborhood of size 1
(with respect to the ℓ1 distance), we are not guaranteed to reach convergence.

Proof. Here is the counter example with a neighborhood of size 1. Let us take
the following profile:

a ≻1 b ≻1 c ≻1 d
c ≻2 a ≻2 b ≻2 d
d ≻3 c ≻3 a ≻3 b
c ≻4 d ≻4 a ≻4 b
a ≻5 c ≻5 d ≻5 b
d ≻6 b ≻6 a ≻6 c
c ≻7 b ≻7 d ≻7 a
d ≻8 b ≻8 a ≻8 c
b ≻9 d ≻9 c ≻9 a
b ≻10 d ≻10 c ≻10 a

Voter 8 will move from d to a with a cardinal difference of 1. For clarity, let
us detail the computation of this first move: the original score is s = (2, 2, 3, 3),
so

S1 = {(2, 2, 3, 3), (1, 2, 3, 3), (2, 1, 3, 3),
(2, 2, 2, 3), (2, 2, 3, 2), (3, 2, 3, 3),

(2, 3, 3, 3), (2, 2, 4, 3), (2, 2, 3, 4)}
that corresponds to add/remove one vote. When moving from d to a, Voter
8 is improved in the first state (2, 2, 3, 3) as it becomes (3, 2, 3, 2), and a is
elected instead of c, which is better from voter 8’s perspective. Voter 8 is also
improved for states (2, 1, 3, 3), (2, 2, 3, 2) and (2, 3, 3, 3), and deteriorated in
states (2, 2, 2, 3), (2, 3, 3, 3) and (2, 2, 3, 4). Other states are not impacted by
this move. Then voter 2 will move from c to a with a cardinal difference of 2,
voter 8 will move from a to d with a cardinal difference of 1 and finally voter
2 will move from a to c with a cardinal difference of 3. This creates a cycle,
which prevents convergence.

Of course, if the size of the neighborhood is larger, there is notmuch hope
for convergence either. We think this example is quite interesting, in particu-
lar when put in perspective with our result of Theorem 76 about partitioned
belief functions. Indeed, this latter result indicates that it is possible to con-
sider a probability measure and a corresponding decision rule such that con-
vergence holds, in the case where the probability measure is defined on an
algebra coarser than the one induced by single score vectors. This indicate
that the counter-example is not so much about having a probabilistic model
itself than about the voters being perhaps too optimistic in their movement,
hinting also at the fact that decision rules such as "maximax" ones, where one
relies on the upper expectation alone are unlikely to lead to convergence of
voting behaviors.
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6.5 . Conclusion and Future Works

6.5.1 . Conclusion
In this chapter, we provide new tools to model uncertainty in strategic vot-

ing from a quantitative perspective. We think that our work substantiallymod-
ifies our view on uncertainty models around broadcast polls. In particular, we
have shown that they capture standard settings in a single framework, and al-
low to extend classical results to more complex situations and new strategic
decision rules. Moreover, we have provided some convergence results in our
model, generalizing results from the iterative voting literature.

In addition, we introduce a novel view on uncertainty coming from the
voter’s perspective in Examples 35 and 36. The uncertainty could come from
the voters themselves because they may not be able to fully express their
preferences.

This chapter concludes our exploration of the various aspects of voting
outcome variability. We now outline some perspectives for future research
related to this final chapter.

6.5.2 . Future Works
We think this opens up vast avenues of research, as to our knowledge no

strategic voting frameworks considered voter induced uncertainty, perhaps
because identifying a central, broadcast score is then an ill-defined problem.

• First, it is often the case that voters can have, at some stage, incom-
plete preferences or uncertain ideas about who they are going to vote
for, and are perhaps expecting more information to be more decisive.
We could however reframe the question of convergence of strategic re-
sults within this framework. Yet, in contrast with previous results where
voters always receive as information a precise score issued from polls,
and announce an updated precise ballot, they would start here fromun-
certain information about the voting result. Then, they may announce
in the next round an updated uncertainty model in regard of the new
information. Let us be a bit more concrete and illustrate this point with
the following example.
Example 38. Letm = 4 and n = 10, µ1({a, b}) = 1, µ2({b, c}) = 1, ∀i ∈
{3, 4}, µi({b}) = 1, ∀j ∈ {5, 6, 7}, µj({c}) = 1, ∀l ∈ {8, 9, 10}, µl({d}) =
1. The joint belief function derived from this information over I410 is
M(([0, 1], [2, 4], [3, 4], 3)}) = 1.

The question is how the belief of voters 1 and 2 are going to be affected
by the broadcast of the poll, namely the joint beliefM. For voter 1, we
might want to say that this belief is going to become µ1({b}) = 1, as a
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has no chances of being elected: voter 1, that was hesitating, may there-
fore report its vote to b. The situation is much less clear for voter 2, that
may not want to make further commitments which is already an issue.
Of course, this situation complexifies if we now consider that voters
may provide more complex belief functions, such as the one in Exam-
ple 36. One possible way to address this issue could be for instance
to consider the recent framework introduced by Pomeret-Coquot et al.
[2022], that considers game and strategic moves in which voters infor-
mation is given in the form of belief functions, and where conditioning
or updating of information is done in various ways. We however leave
this endeavour for future work, as it would probably require to com-
pletely rethink and revisit the framework of strategic voting. Another
added difficulty with respect to the standard framework is that the cur-
rent decision/act of the voter (ai) would have to be (re)defined, as wellas what it means to move from it to consider another action (a′i). Onesolution could be to consider that the voter is evaluating a set of poten-
tially optimal actions, mirroring the fact that we are using decision rules
such as ≻pess that results in partial orders among actions.

• Second, this work can be extended in several directions, notably by con-
sidering other voting rules. For instance, extensions to scoring rules
such as Borda are likely feasible. However, it is worth noting that for
many other voting rules, the notion of strategic behavior is less well de-
fined, and convergence results remain scarce, even in classical settings.

• More generally, we believe that addressing social choice problems
through the lens of uncertainty is particularly fruitful, as it allows one
to account for both incompleteness and uncertainty in preferences. We
therefore expect that such approaches could be applied to awide range
of settings in social choice theory, from voting to fairness problems and
beyond.
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Conclusion

In this thesis, we have studied various sources of variability in election out-
comes. Each was examined through a consistent framework designed to pro-
vide concrete and quantitative insights. Indeed, throughout the thesis, prob-
abilistic tools were employed to rigorously measure how and to what extent
election outcomes can vary under different conditions.

In Chapter 3, we examined the probability of agreement betweendifferent
positional scoring rules. We identified several structured preference distribu-
tions commonly used in social choice experiments in which the probability of
agreement is significantly higher than under the impartial cultures previously
studied in the literature. Our main results for Walsh’s and Conitzer’s distri-
butions characterize the sets of positional scoring rules that converge to the
same expected winner as the number of voters grows large. Importantly, we
also demonstrate that this phenomenon is not only asymptotic since high lev-
els of agreement already emerge in elections with a small number of voters.
Furthermore, we show that such agreement is compatible with the winner of
any Condorcet-consistent rule. We extended this analysis to other structured
distributions, notably the Mallows distribution, under which we observed an
even higher probability of agreement, and the Pólya-Eggenberger urn model,
where the probability of agreement, while not perfect, can still be high in some
cases. From an orthogonal perspective, this work also provided an oppor-
tunity to introduce new insights into how to sample preferences within the
single-peaked domain. Then, we confronted all these theoretical results on
agreement with real-world data. Overall, analyzing agreement under differ-
ent preference distributions provides valuable insights into how the choice of
voting rule contributes to the variability of election outcomes.

In Chapter 4, we adopted a different perspective on the variability of elec-
tion outcomes by taking into consideration strategic voting in plurality elec-
tions. Specifically, we examined the diversity of winners that may arise under
the plurality rule when voters behave strategically. To this end, we introduced
the notions of possible and necessary winners in the context of iterative vot-
ing. Our experiments on the classical iterative voting model revealed that
winner diversity is relatively rare. We provided a theoretical explanation for
this phenomenon, showing that it is largely due to the frequent existence of a
necessary winner, as the process often remains at equilibrium. From a com-
putational point of view, we proved that determining whether a possible or a
necessary winner exists belongs to two different complexity classes. Beyond
these quantitative and computational insights, we also characterized the win-
ner and showed that the probability of electing a Condorcet winner increases
significantly compared to standard plurality rule without strategic behavior.
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Altogether, these results help us understand how strategic voting can shape
election outcomes.

We continued to study strategic voting in Chapter 5, focusing this time on
the role of information provided to voters in plurality elections. Specifically,
we examined whether a polling institute can influence the outcome of an elec-
tion by manipulating the information it broadcasts. From a computational
perspective, we resolved an open problem by establishing the NP-hardness
of the unrestricted manipulation case, where the polling institute is allowed
to send any score. We then turned to the restricted case, where only reason-
able polls, that is, those close to the truthful one, are allowed. In this setting,
we complemented the existing hardness results by providing parameterized
complexity results, using as a parameter the distance between the truthful
poll and the manipulated one. Building on probabilistic techniques from pre-
vious chapters, we further provided a quantitative analysis of the problem by
evaluating how frequently manipulation is possible. Notably, we proved that
the probability of successful manipulation converges to one as the number of
voters increases, under a broad family of cultures. Additionally, we derived
lower bounds that show this phenomenon already arises in elections of mod-
erate size. Our results highlight a high probability of successful manipulation
in the unrestricted case and a more nuanced behavior in the restricted case,
where the feasibility ofmanipulation depends heavily on the allowed distance
from the truthful poll. Nevertheless, when this distance is proportional to
the number of voters, manipulation becomes highly likely. This study demon-
strates that the variability of election outcomes can be significantly affected
by an external agent, in this case the polling institute, through the strategic
dissemination of information.

Finally, in Chapter 6, we relax the assumption that voters’ preferences are
complete and certain, and propose amodel that incorporates uncertainty, the
final source of variability in election outcomes that we consider. This more
general framework allows us to account for voters with incomplete or uncer-
tain preferences, as well as tomodel uncertainty in poll information in a quan-
titative way. Themain contribution of this chapter is to establish a connection
between twowell-known andwidely acceptedmodels of strategic voting from
the literature. It also extends the current framework in which iterative voting
is guaranteed to converge, and provides a basis for modeling new strategic
voting scenarios. This enrichedmodel helps explain howuncertainty in voters’
preferences can lead to variability in election outcomes.

To sum up, adopting a probabilistic approach to study the sources of vari-
ability in election outcomes allows us to gain concrete and quantitative in-
sights into their impact. These tools offer a sense of proportion regarding the
results, which is particularly meaningful when assessing voting procedures or
the practical relevance of social choice problems.
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While each chapter already provides specific and technical directions for
future works, the aim here is not to repeat them all, but rather to explain
how some of them illustrate the relevance of advocating for the inclusion of
probabilistic approaches to outcome variability in computational social choice
problems. We have already shown throughout this thesis that adopting such
an approach can shed new light on several problems. Of course, empirical
experiments can reveal certain tendencies, even if their conclusions often de-
pend on specific parameters, such as the number of voters or candidates. By
contrast, a probabilistic approach allows us to derive formal results that hold
for any election size. To illustrate this point, we present two future works.

First, we believe that comparing the outcome of strategic voting with that
of a classical voting rule can help us better understand the consequences of
strategic behaviors. For instance, one could compare the outcome of plurality
voting with strategic voters with the outcome of the Borda rule, and examine
how often the two agree. Such an analysis could be used to test the hypoth-
esis that strategic voting tends to favor more consensual candidates as the
Borda rule does.

Second, we recall that we have proved an increase in Condorcet efficiency
under impartial cultures for the classical iterative votingmodel. The gold stan-
dard for this line of research would be to establish this result under any rea-
sonable culture and voter behaviors. If such a result could be achieved, it
would illustrate a situation where a classical requirement of voting rules fails,
namely the absence of strategic voting. However, a probabilistic approach
makes it possible to uncover a positive insight, showing that strategic behav-
ior can actually increase the probability of electing the Condorcet winner.

Another set of future directions that further illustrates the value of a
probabilistic approach includes the quantification of strategic behavior in the
mean and the probabilistic evaluation of voting axioms.

In the iterative voting literature, a standard requirement is the conver-
gence of the strategic voting model, primarily to ensure that the procedure is
computationally feasible. However, ensuring convergence often necessitates
restricting the range of voter behaviors, which can reduce strategic deviations
to specific and sometimes unrealistic cases. Yet in practice, cycles are rarely
observed in experiments and do not align with what we typically expect in
real-world settings. This observation suggests that developing a theory of it-
erative voting in the mean could be particularly impactful, as it would allow
for more relaxed assumptions while more accurately reflecting observed be-
haviors. Such a perspective could pave the way for more general and realistic
models for analyzing iterative voting.

The probabilistic evaluation of voting axioms is also a promising avenue,
as it aims to reinterpret classical impossibility theorems from a more quanti-
tative perspective. In the classical axiomatic framework, an axiom is consid-
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ered violated as soon as there exists a single profile that fails to satisfy it. The
probabilistic approach, by contrast, measures how frequently such violations
occur, offering a new lens through which to understand these impossibility
results. The key question then becomes whether these theorems represent
strong impossibilities, that is, whether the proportion of profiles that violate
the axioms is large, or whether such violations are rare and thus perhaps less
concerning in practice.
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Table of Notations

This table summarizes the main notations used throughout the thesis.
Symbol Meaning

Sets & basic parameters
[k] = {1, . . . , k} Set of positive integers from 1 to k.
n Number of voters.
N = [n] = {1, . . . , n} Set of voters.
m Number of candidates.
M = {x1, . . . , xm} Set of candidates.
| · | Cardinality of a set.
Preferences & profiles
x ≻i y Voter i strictly prefers x to y.
x ⪰i y Voter i weakly prefers x to y.
≻i Strict linear order of voter i overM .
P = (≻1, . . . ,≻n) Preference profile of all voters.
Πm

y≻z Set of orders onm candidates where y is ranked be-fore z.
[≻]τ Preference order obtained from ≻ by renaming can-didates with permutation τ .
> Single-peaked axis (a total order) overM .
Voting rules & scores
F(P) Voting rule mapping a profile to a set of winners.
WF (·) Winner set under rule F (when used in the text).
WP (b) Winner set under Plurality for ballot profile b.
bi ∈M Ballot submitted by voter i (plurality).
b ∈Mn Ballot profile (b1, . . . , bn).
sx(b) Plurality score of candidate x for ballot b
α = (α1, · · · , αm) Scoring vector of a positional rule.
▷ Fixed lexicographic tie-breaking order onM .
Probability
π ∈ Π Distribution over preference orders of one voter.
PC Probability distribution on profiles with culture C
PIC Impartial culture probability distribution.
PIAC Impartial anonymous culture probability distribu-tion.
Wπ(F) Expected winners of F under π

(continued on the next page)
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Symbol Meaning

Strategic voting
PW t

i Potential winners for voter i at step t (in an iterativeprocess).
PW t All potential winners at step t (union over voters).
PW (s) Set of potential winners compatiblewith score vector

s.
w0 Initial truthful plurality winner.
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